• Title/Summary/Keyword: pile tip bearing

Search Result 60, Processing Time 0.022 seconds

A Case Study of Post-Grouted Drilled Shaft in Weathered Rock (풍화암소켓 대구경 현장타설말뚝의 선단보강그라우팅 사례)

  • Kwon, Oh-Sung;Jung, Sung-Min;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.5-16
    • /
    • 2011
  • Post-grouting for the drilled shaft is known to remarkably increase the end bearing capacity of pile by consolidating and reinforcing the disturbed ground containing slime around the pile tip. However, the general design guideline for post-grouting has not been established yet in Korea. Especially in the domestic application, the post-grouting is employed just for repairing the pile with unacceptable resistance rather than for increasing the design resistance of pile. Therefore, little is reported about the effect of post-grouting on the pile resistance itself. In this study, the effect of post-grouting on the resistance of drilled shafts installed in the weathered rock in Korea was estimated by performing the bi-directional load tests on the piles with and without the post-grouting. The test results presented that the initial slope of end bearing-base displacement curve in the pile with post-grouting was 4 times higher than that without post-grouting. At the acceptable settlement (1% of pile diameter), the end bearing capacities of piles with and without the post-grouting were estimated to be 12.0 MPa and 7.0 MPa, respectively, which indicate that the post-grouting could increase the end bearing resistance of pile in weathered rock more than 70%.

An Analysis on Co-relationships Between In-situ Investigation Methods and End Bearing Capacity of A Drilled Shaft Socketed into the Weathered Zone (풍화대소켓 현장타설말뚝의 극한단위선단지지력과 원위치 지반조사방법들과의 상관관계 분석)

  • Choi, Yongkyu;Kwon, Oh Sung;Lee, Jong Seong;Choi, Sung Soon;Jung, Sung Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.95-107
    • /
    • 2010
  • To calculate the end bearing capacity of a drilled Shaft socketed into the rockmass, the unconfined compression strength could be used. But it is difficult to find the unconfined compression strength because it is impossible to get undisturbed samples in weathered soils and rocks. So, to calculate the end bearing capacity, the existing bearing formula could not be used. In this study, for five zones (near pile tip, tip~lower 1D, tip~lower 2D, upper 1D~lower 1D, upper 1D~lower 2D), the relationships between the characteristic values of in-situ tests(SPT, DCPT PMT, BST) and the end bearing capacity of drilled shafts were analysed. As a result, DCPT results were represented the best credibility. Also, a design chart of end bearing capacity using DCPT was suggested.

Analysis of a Bi-directional Load Test Result on tong PHC Piles in Consideration of Residual Load (잔류하중을 고려한 장대 PHC 말뚝의 양방향 재하시험 결과해석)

  • Kim, Sung-Ryul;Chung, Sung-Gyo;Lee, Bong-Yeol
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.85-93
    • /
    • 2008
  • For long piles driven in deep clay deposits, it is difficult to estimate the ultimate bearing capacity due to large resistance induced by long embedded depth, and also the load transfer curve due to large residual load induced by negative skin friction, even with the performance of pile load tests. In this research, a hi-directional load test on a PHC pile driven in deep soft deposit was performed in order to evaluate the tip and shaft resistances separately, which are feasible to estimate the ultimate bearing capacity of the pile. Residual load of the pile was determined by continuous monitoring of pile strains after the pile installation. The true resistance and true load-movement curve of the pile were properly estimated by taking account of the residual load. A model far behavior of the shaft resistance vs. movement was also proposed, which includes the effects of residual load based on the experiment. Consequently, it was proved that the residual load should be taken into consideration for correctly analyzing load test results of piles in deep clay deposits.

Simple Pile Loading Test(SPLT) Technique, Principle and Application (간편한 말뚝 재하시험(SPLT)의 개요와 적용)

  • 이명환;이장덕
    • Geotechnical Engineering
    • /
    • v.6 no.4
    • /
    • pp.53-64
    • /
    • 1990
  • There have been numerous methods proposed to predict the pile bearing capacity, but except for the prediction by the pile loading test, not one method is suitable to give a reliable result. Even so, the pile loading test has seldom been performed due to the time and money consuming procedures. In this research, a new way of carrying out the pile loading test, "Simple Pile Loading Test(SPLT)" is introduced. In SPLT technique, the test pile is designed to have a separable shoe with a reduced sized sliding core, so that the skin friction acts as the reaction force to cause the pile tip settlement. Therefore the preparation, installation, loading and unloading of the loading frames and the kentledge can be eliminated.liminated.

  • PDF

Evaluating the impacts of using piles and geosynthetics in reducing the settlement of fine-grained soils under static load

  • Shariati, Mahdi;Azar, Sadaf Mahmoudi;Arjomand, Mohammad-Ali;Tehrani, Hesam Salmani;Daei, Mojtaba;Safa, Maryam
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.87-101
    • /
    • 2020
  • The construction of combined pile-raft foundations is considered as the main option in designing foundations in high-rise buildings, especially in soils close to the ground surface which do not have sufficient bearing capacity to withstand building loads. This paper deals with the geotechnical report of the Northern Fereshteh area of Tabriz, Iran, and compares the characteristics of the single pile foundation with the two foundations of pile group and geogrid. Besides, we investigate the effects of five principal parameters including pile diameter and length, the number of geogrid layers, the depth of groundwater level, and pore water pressure on vertical consolidation settlement and pore water pressure changes over a year. This study assessed the mechanism of the failure of the soil under the foundation using numerical analysis as well. Numerical analysis was performed using the two-dimensional finite element PLAXIS software. The results of fifty-four models indicate that the diameter of the pile tip, either as a pile group or as a single pile, did not have a significant effect on the reduction of the consolidation settlement in the soil in the Northern Fereshteh Street region. The optimum length for the pile in the Northern Fereshteh area is 12 meters, which is economically feasible. In addition, the construction of four-layered ten-meter-long geogrids at intervals of 1 meter beneath the deep foundation had a significant preventive impact on the consolidation settlement in clayey soils.

A Study on the Engineering Behaviour of Prebored and Precast Steel Pipe Piles from Full-Scale Field Tests and Finite Element Analysis (실규모 현장시험 및 유한요소해석을 통한 강관매입말뚝의 공학적 거동에 대한 연구)

  • Kim, Jeong-Sub;Jung, Gyoung-Ja;Jeong, Sang-Seom;Jeon, Young-Jin;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.4
    • /
    • pp.5-16
    • /
    • 2018
  • In the current study, the engineering behaviour of prebored and precast steel pipe piles was examined from a series of full-scale field measurements by conducting static pile load tests, dynamic pile load tests (EOID and restrike tests) and Class-A and Class-C1 type numerical analysis. The study includes the pile load - settlement relations, allowable pile capacity and shear stress transfer mechanism. Compared to the allowable pile capacity obtained from the static pile load tests, the dynamic pile load tests and the numerical simulation showed surprisingly large variations. Overall among these the restrike tests displayed the best results, however the reliability of the predictions from the numerical analysis was lower than those estimated from the dynamic pile load tests. The allowable pile capacity obtained from the EOID tests and the restrike tests indicated 20.0%-181.0% (avg: 69.3%) and 48.2%-181.1% (avg: 92.1%) of the corresponding measured values from the static pile loading tests, respectively. Furthermore, the computed results from the Class-A type analysis showed the largest scatters (37.1%-210.5%, avg: 121.2%). In the EOID tests, a majority of the external load were carried by the end bearing pile capacity, however, similar skin friction and end bearing capacity in magnitude were mobilised in the restrike tests. The measured end bearing pile capacity from the restrike tests were smaller than was measured from the EOID tests. The present study has revealed that if the impact energy is not sufficient in a restrike test, the end bearing pile capacity most likely will be underestimated. The shear stresses computed from the numerical analysis deviated substantially from the measured pile force distributions. It can be concluded that the engineering behaviour of the pile is heavily affected if a slime layer exists near the pile tip, and that the smaller the stiffness of the slime and the thicker the slime, the greater the settlement of the pile.

Mechanism on Bulb Formation of Compaction Pile Depending on Materials (재료에 따른 다짐말뚝 구근 형성 메커니즘)

  • Choi, Jeong Ho;Lee, Min Jy;Falcon, Sen Sven;Park, Seong Jin;Choo, Yun Wook;Kim, Il Gon;Kim, Byeong Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.25-37
    • /
    • 2022
  • In this paper, a small-scale model testing system was developed using a series of small-scale model tests to analyze the mechanism of compaction pile formation and evaluate the quality of controlled grading aggregates proposed as an alternative material to the sand compaction pile (SCP) method and granular compaction pile (GCP). These are the most typical ground improvement methods in field practice, particularly for soft grounds. However, the SCP has faced difficulties due to the supply shortage of natural sand and the corresponding price surge of sand. The GCP is limited in marine soft grounds because of the failure occurring at the pile tip caused by excessive expansion of the deeper bulbs, leading to uneven bulb formation. The uniformity of compacted pile bulbs is critical to ensuring the bearing capacity and quality of the compaction pile. This study aims to evaluate the performance of the new material and controlled grading aggregates using small-scale model tests simulating field compaction process to investigate its potential application in comparison with SCP. The compaction piles are examined in four cases according to different materials used for compaction pile and clay strength. The compaction pile materials, which are made of sand and controlled grading aggregates, used in this study were compared to reveal the mechanism of the bulb creation. The experimental data confirm that the bulb formation quality of the traditional sand and the new material, controlled grading aggregates are comparable. The compaction pile made of controlled grading aggregates presents higher bearing capacity than that of marine sand.

Analysis of Pile Behavior according to Bearing Condition for Vertical Extension Remodeling (수직증축 리모델링 시 말뚝지지 조건에 따른 말뚝기초 거동 분석)

  • Noh, Yujin;Park, Jongjeon;Oh, Kyuoung Seok;Jang, Seo-Yong;Ko, Junyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.191-201
    • /
    • 2024
  • In this study, three-dimensional finite element analysis was used to analyze the behavior of existing and reinforcing piles according to the pile support conditions for vertical extension remodeling. Cap support conditions (group pile, piled raft foundation) and pile tip conditions (rock, soil embedment) were considered as factors influencing existing and reinforcing piles behavior. For the quantitative analysis of existing and reinforcing piles, the displacement, load distribution ratio, and axial force by depth according to the analysis stage were analyzed. As a result of the analysis, it was confirmed that the largest settlement occurred in the reinforcing pile due to the pre-loading method. In particular, a large amount of settlement occurred in group piles regardless of the embedment conditions. In the piled raft foundation, it was confirmed that the displacement and load distribution ratio of existing piles and reinforcing piles were reduced due to the influence of the raft. The axial force by depth showed a difference between group pile and piled raft foundation, which appears to be a major factor affecting displacement and load distribution ratio. Based on the numerical analysis results, it was confirmed that cap support conditions and pile tip embedment conditions should be considered in the design of pile foundations for vertical extension remodeling.

A Study of the Influence of Negative Skin Friction on Single Piles from Consolidation Analyses (압밀해석을 통한 부마찰이 작용하는 단독말뚝의 거동분석)

  • Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.29-36
    • /
    • 2009
  • A series of two-dimensional (2D) finite element analyses have been performed to study the behaviour of single piles in consolidating ground. The analysis was conducted based on coupled analyses by considering changes of pore water pressure in the clay. In the analyses the soil slippage at the pile and the soil interface has been included. The method widely used in practice somewhat overestimates dragload by about 25% compared to the rigorous numerical analysis since partial mobilization of skin friction near neutral plane and reductions in the vertical soil stress is not incorporated. When soil slip develops at most of the pile length at the pile-soil interface during consolidation, further increases in dragload is not significant. Application of coating on the pile surface can reduce dragload and pile settlement substantially, but under an axial load on the pile head very large pile settlement can be developed unless pile tip is located to a stiff bearing layer.

  • PDF

Resistance Factor and Target Reliability Index Calculation of Static Design Methods for Driven Steel Pipe Pile in Gwangyang (광양지역에 적합한 항타강관말뚝의 목표신뢰성지수 및 저항계수 산정)

  • Kim, Hyeon-Tae;Kim, Daehyeon;Lim, Jae-Choon;Park, Kyung-Ho;Lee, Ik-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8128-8139
    • /
    • 2015
  • Recently, the necessity of developing the load and resistance factor design(LRFD) for soft ground improvement method has been raised, since the limit state design is requested as international technical standard for the foundation of structures. In this study, to develop LRFD codes for foundation structures in Korea, target reliability index and resistance factor for static bearing capacity of driven steel pipe piles were calibrated in the framework of reliability theory. The 16 data(in Gwangyang) and the 57 data(Korea Institute of Construction Technology, 2008) sets of static load test and soil property tests conducted in the whole domestic area were collected along with available subsurface investigation results. The resistance bias factors were evaluated for the tow static design methods by comparing the representative measured bearing capacities with the expected design values. Reliability analysis was performed by two types of advanced methods : the First Order Reliability Method (FORM), and the Monte Carlo Simulation (MCS) method using resistance bias factor statistics. As a result, when target reliability indices of the driven pipe pile were selected as 2.0, 2.33, 2.5, resistance factor of two design methods for SPT N at pile tip less than 50 were evaluated as 0.611~0.684, 0.537~0.821 respectively, and STP N at pile tip more than 50 were evaluated as 0.545~0.608, 0.643~0.749 respectively. The result from this research will be useful for developing various foundations and soil structures under LRFD.