• Title/Summary/Keyword: pile capacity

Search Result 752, Processing Time 0.027 seconds

A Study on the Utilization of PG-Pile in waste landfill (폐기물 매립지반에서의 PG Pile의 적용성에 관한 연구)

  • 천병식;최춘식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.419-426
    • /
    • 2000
  • Waste landfill consists of cover layer, glass, robber, sheet, food waste, etc and is in very loose state. So, the proper method must be applied to ground improvement of waste landfill according to its characteristics and conditions. In this paper, analysis for field tests as static loading test, bearing capacity test were peformed. In result, PG pile method proved to be effective and economic, because it affected increase of end bearing capacity, the prevention of differential settlement and over 20% increase of density by expansion of pile.

  • PDF

A Study on the Utilization of PG-Pile in Waste Landfill (폐기물 매립지반에서의 PG Pile의 적용성에 관한 연구)

  • 천병식;최춘식
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.135-139
    • /
    • 2000
  • Waste landfill consists of cover layer, glass, robber, sheet, food waste, etc and is in very loose state. So, the proper method must be applied to ground improvement of waste landfill according to its characteristics and conditions. In this paper, analysis for field tests as static loading test, bearing capacity test were performed. In result, PG pile method proved to be effective and economic, because it affected increase of end bearing capacity, the prevention of differential settlement and over 20% increase of density by expansion of pile.

  • PDF

The Bending and the Bearing Capacity of Bonding Method of Steel Piles into Pile Caps (강관말뚝 두부보강 방법의 휨내력 및 압축내력 특성)

  • 오성남;유제남;홍성영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.389-396
    • /
    • 2002
  • Engineers should be careful in the design of bonding piles into pile caps because they are weak points in the pile foundation. Therefore in this study, the mechanism of bonding piles into pile caps was explained, and the design method of the composite bonding method was proposed. And the proposed design method was verified in comparison with the result of the full scale test. Also, the characteristic for the bearing capacity and the mechanism of compressive load of bonding method were analyzed.

  • PDF

The behavior and capacity of lateral loaded pile characteristics in multi-layered sand (사질토 다층지반에 관입된 말뚝의 수평 거동 및 수평 지지력 특성)

  • Kyung, Doo-Hyun;Kang, Beong-Joon;Hong, Jung-Moo;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.738-743
    • /
    • 2008
  • Ultimate lateral loaded pile capacity is influenced by soil conditions. Methods of calculating ultimate lateral loaded pile capacity in homogeneous soil were suggested by a lot of previous researchers.(Broms 1964, Petrasovits & Award 1972, Prasad & Chari 1999, Zhang et al. 2005) There is only few homogeneous soil in actual condition, however, it could be not conviction that the methods from previous researchers are correct in multi-layered soil. In this study, the variation of ultimate lateral loaded pile capacity was analyzed in the various multi-layered conditions, ultimate lateral loaded pile capacity was calculated by the methods from previous researchers. For this study, the Lateral Pile Load Tests (LPLT) were performed in calibration chamber, the soil was composed by 3 layers and each layers had a various relative density. The results of LPLT were compared with calculated results from the previous researchers.

  • PDF

Estimation of Bearing Capacity of Non-Displacement Piles in Sand Considering Pile Shape (모래지반에서 말뚝형태를 고려한 비배토말뚝의 지지력 산정)

  • Paik, Kyu-Ho;Lee, Jun-Hwan;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.101-110
    • /
    • 2007
  • In order to investigate the effect of the pile shape on the bearing capacity of non-displacement piles, a series of model pile load tests were performed using a calibration chamber and three model piles with different shape. Results of the model tests showed that the bearing capacity of tapered piles was affected by its taper angle as well as the stress states and relative density of soil. Based on the results of model pile load tests, a new design equation for estimation of the bearing capacity of non-displacement piles was proposed, and it takes into account the effect of the taper angles on the bearing capacity of non-displacement piles.

Case Study on the Characteristics of Vertical Bearing Capacity for Steel Pipe Pile Installed by PRD (PRD 강환 말뚝의 연직지지력 특성에 관한 사례 연구)

  • 최용규;정창규;정성기;김동철;정태만
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.225-232
    • /
    • 1999
  • Construction case of PRD (Percussion Rotary Drill) pipe pile and matters to be attended in construction of PRD pile were reviewed. The compressive and uplifting static pile load tests for PRD piles were performed and, also, analysis by Pile Driving Analyzer was done. Based on these results, bearing components in each resisting part (that is: steel toe, external skin, and internal skin) were measured separately. The measured resisting force was compared to the value calculated by the estimated formula. The pile capacity was mobilized in steel toe area and the external skin friction and the internal friction were not produced. Thus, it could be considered that toe of PRD pile should be supported in hard bearing stratum (for example, the fresh soft rock).

  • PDF

Investigation for Possible Practical Applicability of Open-Ended PHC Pile (개단 고강도 콘크리트(PHC) 말뚝의 실용성 검토)

  • Paik, Kyu Ho;Lee, Seung Rae;Park, Hyoun Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.965-975
    • /
    • 1994
  • Opening the tip of a PHC pile, under a constant driving energy, can result in an increment of penetration depth due to the decrement of driving resistance. Therefore, the bearing capacity of an open-ended PHC pile may become larger than that of a closed-ended PHC pile by virtue of the increased embedded length. However, two main problems can be caused by opening the end of PHC pile. First problem is the variation of bearing capacity by opening the pile tip, and the second one is whether the tip of an open-ended PHC pile will be failured by a high pressure developed by the soil plug. In this study, model pile tests in calibration chamber were performed to investigate the practicability of open-ended PHC pile in view of both the pile bearing capacity and the possible failure of the pile tip. According to the test results, the total bearing capacity of open-ended piles approaches the total bearing capacity of closed-ended piles with the increase of the penetration depth. The failure of pile tip could be occurred in the region of 0.8~1.1 times as the inside diameter from the pile tip.

  • PDF

Lateral capacity of piles in layered soil: a simple approach

  • Mandal, Bikash;Roy, Rana;Dutta, Sekhar Chandra
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.571-584
    • /
    • 2012
  • Appropriate assessment of lateral capacity of pile foundation is known to be a complex problem involving soil-structure interaction. Having reviewed the available methods in brief, relative paucity of simple and rational technique to evaluate lateral capacity of pile in layered soil is identified. In this context, two efficient approaches for the assessment of lateral capacity of short pile embedded in bi-layer cohesive deposit is developed. It is presumed that the allowable lateral capacity of short pile is generally dictated by the permissible lateral displacement within which pile-soil system may be assumed to be elastic. The applicability of the scheme, depicted through illustration, is believed to be of ample help at least for practical purpose.

Evaluation of Point Bearing Capacity using Field Model Pile Test (현장 축소모형 말뚝 시험을 이용한 선단지지력 예측)

  • Lee, Chang-Ho;Lee, Woo-Jin;Jeong, Hun-Jun;Han, Shin-In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.3
    • /
    • pp.47-54
    • /
    • 2005
  • In many practical cases, design methods of pile have been used mainly semi empirical bearing capacity equations. It can be done that confirmation of pile bearing capacities through using of dynamic and static tests during constructing or after constructions. If a prediction of layered point pile bearing capacity could be done through simple tests during field investigation, it could be done that more reliable design of pile than a prediction of using semi empirical equations or static formulations. This paper suggests a method to estimated point bearing capacity during in-situ investigation by using the dynamic rod model pile and verifies the point bearing capacity compare with results of static pile load tests. From test results, the unit ultimate point bearing capacities are relatively similar through a dynamic rod model pile tests and static pile load tests. The unit ultimate point bearing capacity by using N value is shown about 50 % value of measured unit ultimate point bearing capacity from field test result and the prediction of the unit ultimate point bearing capacity by using N value is shown very conservative, illogical and uneconomical pile designs.

  • PDF

Bearing Capacity of Driven H-Piles in Embankment (성토지반에 타입된 H형강 말뚝의 지지거동)

  • 박영호;정경자;김성환;유성근;이재혁;박종면
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.173-182
    • /
    • 2000
  • To find axial and lateral responses of impact-driven H piles in embankment(SM), the H piles are instrumented with electric strain gages, dynamic load test is performed during driving, and then the damage of strain gages is checked simultaneously. Axially and laterally static load tests are performed on the same piles after one to nine days as well. Then load-settlement behavior is measured. Furthermore, to find the set-up effect in H pile, No. 4, 16, 26, and R6 piles are restriked about 1, 2, and 14 days after driving. As results, ram height and pile capacity obtained from impact driving control method become 80cm and 210.3∼242.3ton, respectively. At 15 days after driving, allowable bearing capacity by CAPWAP analysis, which 2.5 of the factor of safety is applied for ultimate bearing capacity, increases 10.8%. Ultimate bearing capacity obtained from axially static load test is 306∼338ton. This capacity is 68.5∼75.7% at yield force of pile material and is 4∼4.5 times of design load. Allowable bearing capacity using 2 of the factor of safety is 153∼169ton. Initial stiffness response of the pile is 27.5ton/mm. As the lateral load increases, the horizontal load-settlement behaves linearly to which the lateral load reaches up to 17ton. This reason is filled with sand in the cavity formed between flange and web during pile driving. As the result of reading with electric strain gages, flange material of pile is yielded at 19ton in horizontal load. Thus allowable load of this pile material is 9.5ton when the factor of safety is 2.0. Allowable lateral displacement of this pile corresponding to this load is 23∼36mm in embankment.

  • PDF