• Title/Summary/Keyword: pile capacity

Search Result 752, Processing Time 0.024 seconds

Downward Method of H-PILE Alternative Materials of Percusion Rotary Drill (PRD시공시 H-PILE 대체 자재로 원가절감 할수 있는 공법 사례)

  • Lee, Wang-Hee;Lee, Il-Jae;Iim, Si-Nae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.199-202
    • /
    • 2014
  • In recent years the downtown, Top-down method has been applied in a major method to solve the complaints due to noise, vibration, dust and safety issues such as cracking due to settlement when the excavation close to the building. Until it is installed underground permanent foundation, the Pre-founded Column is a pile foundation as well as a column to bear the upper construction load. The Pre-founded Column is constructed by PRD method generally. The EnP(Enlarging Pile) method can be expanded locally boring diameter of the embedment zone as compared to the PRD method existing general. Since the bearing capacity is increased by the boring diameter is expanded, the embedment length is reduced, the construction cost is reduced.

  • PDF

A study on Underground and Above-ground Extensions of Buildings using Jack-piles (잭파일을 활용한 건축물의 지하 및 지상증축에 관한 연구)

  • Kang, Seong-Jin;Byun, hang Yong;Hwang, Tae-il;Sho, Kwang-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.23-24
    • /
    • 2022
  • There are many demands for vertical extension construction method in domestic large cities. In this paper, we analyzed and presented the results of examining the cases of ground floor extension and basement extension using the jack pile method. Since the Jack Pile method presses in all the piles without excavating the ground, the bearing capacity of the all the piles can be checked. It was investigated as a safe construction method unlike other small-diameter pile construction methods during underground extension.

  • PDF

Experimental Study on Segregated Layers of Materials and Compressive Strength of Concrete for Pretensioned Spun High Strength Concrete Pile (PHC 파일의 압축강도와 재료분리층에 대한 실험연구)

  • 이성로;강성수;유성원
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • Pretensioned spun high strength concrete (PHC) pile has to be quality-controlled and provided an adequate concrete cover to assure high load carrying capacity, impact resistance, economy, and durability. During spun pre-casting, the pile section is divided into several segregated layers such as laitance, paste, mortar, and concrete layers. Greater the thickness of segregated layers, more difficult it is to guarantee the capacity and the durability of PHC pile. The experimental study was performed to investigate the effects of centrifugal condition on the segregated layers of materials and the compressive strength of concrete for PHC pile. The considering factors in the test were centrifugal time and magnitude of centrifugal force. These factors have been found to have greater influence on the segregation than the concrete strength. The moderate centrifugal condition has to be considered to maintain quality assurance in the production of PHC pile, especially to provide the adequate concrete cover over its tendons.

Analysis of Characteristics of Connected-pile Foundations for Transmission Tower according to Changes of Load and Connection Beam Conditions in Clay (점토지반에서 하중특성 및 연결보조건에 따른 송전철탑용 연결형 말뚝기초의 특성 분석)

  • Kyung, Doohyun;Lee, Junhwan;Paik, Kyuho;Kim, Youngjun;Kim, Daehong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.5-18
    • /
    • 2013
  • The differential settlement between the foundations causes the critical damage on the transmission tower constructed in soft ground. Connected-pile foundation for transmission tower structures is an option to prevent the differential settlement. It consists of main foundations and connection beams that are placed between the individual foundations at each corner of tower. In this study, 24 model pile load tests were conducted at a construction site in jeonlabuk-do to investigate the effects of the connection beams on transmission tower foundation. In model tests, various load conditions and connection beam conditions were considered. As the test results, the displacements of connected-pile foundation differed in accordance with load directions. The settlements of connected-pile foundation decreased with the increased stiffness of connection beams, lateral load capacity decreased in accordance with load height, and the lateral load capacity on the failure criteria was similar regardless of load direction.

A Parametric Study to Estimate the Behavior of a Piled Raft Foundation Influenced by Ground Conditions (지반조건이 Piled Raft 기초의 거동에 미치는 영향 평가를 위한 매개변수 연구)

  • You, Kwang-Ho;Jung, Yeun-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.35-46
    • /
    • 2016
  • In this study, a sensitivity analysis was carried out by using numerical analysis under the consideration that it is difficult to analyze the behavior of real piled raft foundations on different ground conditions through a real scale test. The program used for numerical analysis is FLAC 3D based on the finite difference method. Piles were modelled by using pile element that is one of the structure elements of FLAC 3D and the ground and raft were modelled by using continuum element. With a fixed pile arrangement of $3{\times}3$, the diameter, length, space of piles, and ground conditions were selected as sensitivity parameters and their mutual correlation were investigated. As a result, the bigger and longer pile diameter, length and pile space are, the bigger the bearing capacity of the piled raft becomes. When pile space exceeded a specific value, however, the piled raft foundation behaved like a shallow foundation supported by only a raft. Also it can be confirmed that the better ground conditions are, the more total bearing capacity of the piled raft foundation increases.

Study(III) on the Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - The Proper Use of Long-term Allowable Compressive Load of PHC Piles by Analyzing Quality Test and Product Specifications Data - (사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(III) - 품질 성능 검사 자료 및 성능 제원 표 분석을 통한 PHC말뚝의 장기허용압축하중 성능의 올바른 활용 -)

  • Kim, Chae Min;Yun, Dae Hee;Lee, Chang Uk;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.15-28
    • /
    • 2019
  • Long-term allowable compressive Loads of PHC piles were analyzed based on qualification tests results by 17 small and medium PHC pile producing companies and product specifications by 6 major and 17 small and medium PHC pile producing companies. At the present stage, an average long-term allowable compressive load of PHC pile was designed at 70% level from current design data, and safety factor of 4.0 was applied to long-term allowable compressive loads of PHC pile despite of its excellent quality. Most quality standards of PHC pile are specified at KS F 4306. But compressive strength test method of spun concrete is specified at KS F 2454. As a result of analyzing quality test data supplied by each manufacturer, all quality test results showed higher performances than standard values. Therefore, it was considered that the capacity of PHC pile can be used up to the maximum allowable compressive load of PHC pile when PHC pile is designed.

Mechanism on Bulb Formation of Compaction Pile Depending on Materials (재료에 따른 다짐말뚝 구근 형성 메커니즘)

  • Choi, Jeong Ho;Lee, Min Jy;Falcon, Sen Sven;Park, Seong Jin;Choo, Yun Wook;Kim, Il Gon;Kim, Byeong Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.25-37
    • /
    • 2022
  • In this paper, a small-scale model testing system was developed using a series of small-scale model tests to analyze the mechanism of compaction pile formation and evaluate the quality of controlled grading aggregates proposed as an alternative material to the sand compaction pile (SCP) method and granular compaction pile (GCP). These are the most typical ground improvement methods in field practice, particularly for soft grounds. However, the SCP has faced difficulties due to the supply shortage of natural sand and the corresponding price surge of sand. The GCP is limited in marine soft grounds because of the failure occurring at the pile tip caused by excessive expansion of the deeper bulbs, leading to uneven bulb formation. The uniformity of compacted pile bulbs is critical to ensuring the bearing capacity and quality of the compaction pile. This study aims to evaluate the performance of the new material and controlled grading aggregates using small-scale model tests simulating field compaction process to investigate its potential application in comparison with SCP. The compaction piles are examined in four cases according to different materials used for compaction pile and clay strength. The compaction pile materials, which are made of sand and controlled grading aggregates, used in this study were compared to reveal the mechanism of the bulb creation. The experimental data confirm that the bulb formation quality of the traditional sand and the new material, controlled grading aggregates are comparable. The compaction pile made of controlled grading aggregates presents higher bearing capacity than that of marine sand.

Settlement Predictions for Pile Foundations (말뚝기초의 침하예측)

  • 윤길림
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.137-154
    • /
    • 1997
  • Piling engineers in limit state design should consider both capacity of a pile and settlements of pile for stability of a structure. This paper analyzes the prediction of the settlements of single piles and nine-group piles installed at an overconsolidated clay site by common prediction methods and cone penetrometer test data obtained closely at pile locations. The effects of Young's modulus, which varies spatially in soil profile, on estimating the set tlements of piles have been investigated briefly. The predicted settlements for single piles and nine-pile group by using simple linear elan tic methods, Vesic's method and Poulos's method, overestimated overalls the measured valroes, and the assumption of Youngs modulus, which are to be varied linearly through the soil layers. did not significantly affect the settlement predictions.

  • PDF

Reliability Analysis of Offshore Guyed Tower Against Anchor Pile Failures (해양 가이드-타워의 고정말뚝에 대한 신뢰도 해석)

  • 류정선;윤정방;강성후
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.117-127
    • /
    • 1991
  • For the reliability analysis of offshore guyed towers for large storm events, failure of an anchor pile of the guyline system is investigated. Two failure modes of the anchor pile due to the extreme and the cyclic wave loadings are considered. The probability of failure due to the extreme anchor load is evaluated based on the first excursion probability analysis. Degradation of the pile capacity due to cyclic loadings is evaluated by using empirical fatigue curves for a driven pile in clay. The numerical results indicate that the failure probability due to the cyclic loadings can be as large as the risk due to extreme loading, particularly for the cases with the low design safety level of the pile strength and the large uncertainty of the pile resistance.

  • PDF

A Study on the Skin Friction of Piles Driven into Residual Soils (풍화잔류토 지반에 타설된 말뚝의 주면마찰 특성 연구)

  • 이명환;이인모
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.21-30
    • /
    • 1992
  • Though the pile skin friction can take substantial amount of load carrying capacity, it has often been ignored in the design. Even when the pile skin friction is taken into consideration, it is questionable about the reliability of estimating it. It has been even worse in Korea. since in most cases the available information is only the SPT N values and not much information has been known about the correlation between N value and the pile skin friction in residual soils. With SPLT (Simple Pile Loading Test) it is possible to measure the pile skin friction separately from the tip resistance. In this research, results of the measured pile skin friction in residual soils are analysed. And a new design correlation based on SPT N value is proposed.

  • PDF