• Title/Summary/Keyword: pile capacity

Search Result 752, Processing Time 0.025 seconds

Incremental filling ratio of pipe pile groups in sandy soil

  • Fattah, Mohammed Y.;Salim, Nahla M.;Al-Gharrawi, Asaad M.B.
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.695-710
    • /
    • 2018
  • Formation of a soil plug in an open-ended pile is a very important factor in determining the pile behavior both during driving and during static loading. The degree of soil plugging can be represented by the incremental filling ratio (IFR) which is defined as the change in the plug length to the change of the pile embedment length. The experimental tests carried out in this research contain 138 tests that are divided as follows: 36 tests for single pile, 36 tests for pile group ($2{\times}1$), 36 tests for pile group ($2{\times}2$) and 30 pile group ($2{\times}3$). All tubular piles were tested using the poorly graded sand from the city of Karbala in Iraq. The sand was prepared at three different densities using a raining technique. Different parameters are considered such as method of installation, relative density, removal of soil plug with respect to length of plug and pile length to diameter ratio. The soil plug is removed using a new device which is manufactured to remove the soil column inside open pipe piles group installed using driving and pressing device. The principle of soil plug removal depends on suction of sand inside the pile. It was concluded that the incremental filling ratio (IFR) is changed with the changing of soil state and method of installation. For driven pipe pile group, the average IFR for piles in loose is 18% and 19.5% for L/D=12 and 15, respectively, while the average of IFR for driven piles in dense sand is 30% and 20% for L/D=12 and L/D=15 respectively. For pressed method of pile installation, the average IFR for group is zero for loose and medium sand and about 5% for dense sand. The group capacity increases with the increase of IFR. For driven pile with length of 450 mm, the average IFR % is about 30.3% in dense sand, 14% in medium and 18.3% for loose sand while when the length of pile is 300 mm, the percentage equals to 20%, 17% and 19.5%, respectively.

Study(V) on Development of Charts and Equations Predicting Allowable Compressive Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Analysis of Results and Data by Parametric Numerical Analysis - (사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연속 연구(V) - 매개변수 수치해석 자료 분석 -)

  • Park, Mincheol;Kwon, Oh-Kyun;Kim, Chae Min;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.10
    • /
    • pp.47-66
    • /
    • 2019
  • A parametric numerical analysis according to diameter, length, and N values of soil was conducted for the PHC pile socketed into weathered rock through sandy soil layers. In the numerical analysis, the Mohr-Coulomb model was applied to PHC pile and soils, and the contacted phases among the pile-soil-cement paste were modeled as interfaces with a virtual thickness. The parametric numerical analyses for 10 kinds of pile diameters were executed to obtain the load-settlement relationship and the axial load distribution according to N-values. The load-settlement curves were obtained for each load such as total load, total skin friction, skin friction of the sandy soil layer, skin friction of the weathered rock layer and end bearing resistance of the weathered rock. As a result of analysis of various load levels from the load-settlement curves, the settlements corresponding to the inflection point of each curve were appeared as about 5~7% of each pile diameter and were estimated conservatively as 5% of each pile diameter. The load at the inflection point was defined as the mobilized bearing capacity ($Q_m$) and it was used in analyses of pile bearing capacity. And SRF was appeared above average 70%, irrespective of diameter, embedment length of pile and N value of sandy soil layer. Also, skin frictional resistance of sandy soil layers was evaluated above average 80% of total skin frictional resistance. These results can be used in calculating the bearing capacity of prebored PHC pile, and also be utilized in developing the bearing capacity prediction method and chart for the prebored PHC pile socketed into weathered rock through sandy soil layers.

Uplift Testing and Load-transfer Characteristics of Model Drilled Shafts in Compacted Weathered Granite Soils (화강풍화토 지반에 타설된 소형 현장 타설 말뚝의 인발시험 및 하중 전이 특성)

  • 임유진;서석현
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.105-117
    • /
    • 2002
  • In the design of foundations for the super-structures such as transmission towers and oil-platforms, the foundations must be considered as a medium to resist cyclic tensile forces. In this study, the uplift capacity of the drilled shaft used as the medium resisting to this pattern of forces is investigated by performing cyclic uplift test of a small model-drilled shaft constructed in compacted granite soil in a steel chamber. In this test, the behavioral difference between a pile loaded on the top of the pile and a pile loaded at the bottom of the pile was investigated intensively. The load transfer curves obtained from the test were investigated by changing the confining pressure in the chamber. The load tests also included creep test and cyclic test. It is found from the tests that uplift capacity of the shaft loaded at the bottom is greater than that of the shaft loaded on the top of the pile. It is found also from the creep test that the pile loaded at the bottom was more stable than the shaft loaded on the top. If a pile loaded at the bottom is pre-tensioned, the pile will be most effective to the creep displacement. It is found also from the cyclic tests that apparent secant modulus obtained in a cycle of the load increases with the number of cycles.

Field Applicability Evaluation of Foundation Combine with Footing and Pile by Model Test (모형실험을 통한 복합기초의 현장 적용성 평가)

  • Kim, Hak-Moon;Jang, Kyung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3729-3744
    • /
    • 2011
  • As the size of structures become larger by civil and architectural structures becoming large, deeply underground, and high-rise, the conditions of underground foundation vary according to the location that the lack of bearing capacity locally because of ununiform of foundation in some parts is frequent. Generally, when the foundation is not homogeneous, the acquisition of safety through applying the most conservative foundation method possible becomes the focus to secure the stability of the superstructures. It is considered as because of inability to verify the application and stability and application of construction of different foundations through an outlined review because of lack of study in case of different foundation of mixed use of direct foundation and pile foundation. Therefore, through measurement interpretation of the different foundation in which the direct foundation and pile foundation are mixed in use, the grounds in which the hypothetical bearing capacity changes dramatically was modeled to evaluate the applicability of different foundations. Also, based on the results of measurement interpretation, various foundations are created by using plaster, Joomunjin standard soil, and rubble to conduct an indoor model test to compare and analyze the movement of pile foundation and different foundations. Based on such research results, the stability and applicability of the different foundations which is more efficient and economical than the existing foundations in case of grounds in which the bearing capacity changes dramatically by comparing and analyzing the different foundations (direct foundation + pile foundation) with the conservative pile foundation and mat foundation. As a result, when the different foundation is applied, the overall settlement amount increased than the conservative pile foundation. However, the difference was very minute and it has been confirmed to be no issue as a result of assessment of stability of the differential settlement of structures through critical angle displacement.

Simple Pile Loading Test(SPLT) Technique, Principle and Application (간편한 말뚝 재하시험(SPLT)의 개요와 적용)

  • 이명환;이장덕
    • Geotechnical Engineering
    • /
    • v.6 no.4
    • /
    • pp.53-64
    • /
    • 1990
  • There have been numerous methods proposed to predict the pile bearing capacity, but except for the prediction by the pile loading test, not one method is suitable to give a reliable result. Even so, the pile loading test has seldom been performed due to the time and money consuming procedures. In this research, a new way of carrying out the pile loading test, "Simple Pile Loading Test(SPLT)" is introduced. In SPLT technique, the test pile is designed to have a separable shoe with a reduced sized sliding core, so that the skin friction acts as the reaction force to cause the pile tip settlement. Therefore the preparation, installation, loading and unloading of the loading frames and the kentledge can be eliminated.liminated.

  • PDF

Evaluation of Horizontal Force on Pile Shaft Surrounded by Vertical PET Aggregate Layer for Fluid Machinery Structure Installation in Cold Region's Plant (동토 플랜트 유체기계 구조물 설치를 위한 PET 골재적용 말뚝의 주면작용 수평력 평가)

  • Ji, Subin;Jang, Sung Min;Hwang, Soon Gap;Lee, Kicheol;Kim, Dongwook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.43-47
    • /
    • 2016
  • Pile foundations constructed on extremely cold regions cause serviceability problems of superstructures from repeated actions of ground freezing and thawing. Oil sand module plants are mainly constructed on seasonal frozen ground. Due to the freezing and thawing actions of grounds, vertical movements of piles have been observed. To solve these erratic pile movement problems, thin vertical layer of PET aggregates is installed around the pile shaft to prevent potential unfavorable pile movements. There is no known method to calculate "thin PET aggregate layer" -surrounded pile shaft resistance (capacity) against vertical loads; therefore, this experimental research is conducted. Specifically, in this study, horizontal (normal) pressures on pile shaft were assessed varying PET aggregate layer thickness based on the experiment.

Study on the Fractures Types of PHC Pile by Impact Load of Follower (보조말뚝의 충격하중에 의한 PHC말뚝의 파손유형 고찰)

  • Seo, Dong-Nam;Choi, Sang-Ho;Kim, Jin-Sik;Kim, Min-Kab;Lee, Dong-Hyeon;Cho, Seong-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.144-145
    • /
    • 2021
  • This study analyzed the cases of cracks in piles due to the use of followers under construction conditions where water exists inside the piles, and confirmed whether the piles were cracked through a field test simulating the construction conditions in which water pressure inside the piles was generated by a hammer. According to the construction case, under the construction condition where the pile length is 20% to 30% shorter than the drilled length, about 80% cracks occur, so there is a high possibility of cracking due to water inside the pile. A field test was conducted to confirm the type of pile failure due to hammer under the construction condition in which water exists inside the pile. The pile head was not destroyed by the compressive load, and one or more longitudinal cracks occurred along the PC steel wire. The closed end pile generates water pressure by hammer. the follower and cushion(compression plywood) must be drilled at least 0.4D. It is expected that improved quality control will be possible as the water pressure inside the pile is reduced.

  • PDF

An Experimental Study on the Behavior of Composite Ground Improved by SCP and GCP with Low Replacement Ratio (저치환율 SCP와 GCP로 개량된 복합지반의 거동에 관한 실험적 연구)

  • Kim, Byoung-Il;Yoo, Wan-Kyu;Kim, Young-Uk;Moon, In-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.936-942
    • /
    • 2013
  • This paper presents the results of laboratory tests conducted to investigate the effectiveness of applying methodology of a sand compaction(SCP) and a gravel compaction pile(GCP) on soft ground. The test conditions involved relatively low replacement ratios (=10, 20, and 30%) of a pile to unit cell at 1g (gravity acceleration) level. Results revealed that GCP significantly enhanced bearing capacity, settlement reduction, and consolidation rate compared with SCP.

Effectiveness of Reinforcement by Geogrid & Pile in Soft Clay (지오그리드와 말뚝에 의한 연약지반 보강효과)

  • 신은철;이상혁;이명원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.61-69
    • /
    • 2000
  • It is not easy to find a good soil condition due to the shortage of suitable land for construction work. The earth structure and buildings can be constructed over the soft soil. The soft soil must be treated either using the reinforcement element or dewatering. Most of land reclamation projects are being implemented along the south coast or west coast of the Korean Peninsula. The soils in these areas are covered with the soft marine clay, so soil and site improvement is the most important things to do. Pile foundation at the bottom of embankment can be constructed either in the soft ground or in the soil contaminated area. The purpose of this research is to develop "geogrid-reinforced piled embankment method" to prevent the differential settlement and increase the bearing capacity of soil. In this study, the effectiveness of the geogrid-reinforcement was studied by varying the space between piles and reinforcement conditions. Also, the geotechnical engineering properties of the embankment material and foundation soil were determined through the laboratory tests as well as the field tests. As a result, the site that the pile-spacing S = 3b with geogrid reinforcement is the most effective to reduce the differential settlement and increase load bearing capacity.

  • PDF

Evaluation of Bearing Capacity of Piled Raft Foundation on OC Clay Using Centrifuge and Numerical Modeling (원심모형 실험과 수치해석을 이용한 과압밀 지반에서의 말뚝지지 전면기초의 지지력 평가)

  • Park, Jin-Oh;Chao, Yun-Wook;Kim, Dong-Sao
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.23-33
    • /
    • 2009
  • In this study the characteristics of piled raft was investigated by using both centrifuge and numerical modeling. The ultimate bearing capacities of single pile, unpiled raft, freestanding pile group and piled raft were compared in order to investigate load sharing of each element : pile and raft. The comparison determined parameters to simply evaluate the ultimate bearing capacity of piled raft. Centrifuge test results were simulated by numerical simulation to verify the parameters.