• Title/Summary/Keyword: pig manure composting

Search Result 59, Processing Time 0.025 seconds

Composting Impacts on Soil Properties and Productivity in a Fluvio-marine Deposit Paddy Field (하해혼성 평야지 논토양의 부산물퇴비 시용효과)

  • Yang, Chang-Hyu;Kim, Byeong-Su;Yoo, Chul-Hyun;Park, Woo-Kyun;Yoo, Young-Seok;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.3
    • /
    • pp.181-188
    • /
    • 2007
  • Objective of this research was to identify by-product composting impacts on paddy soil properties and rice yield. Research was conducted in Iksan (soil was identified as a Jeonbug series) located in Honam plain area from 2001 to 2004. Composts, such as cow manure sawdust compost(CMSC), Chicken manure sawdust compost(ChMSC) and Pig manure sawdust compost(PMSC) were treated in the reseach plots for every, 2, and 3 year term. Some physical properties, such as, soil hardness, and bulk density tended to decrease with application of compost and decreased in order of CMSC, ChMSC, and PMSC, while surface soil depth and porosity were increased in order of CMSC, PMSC, and ChMSC. Some chemical soil properties, such as organic matter, available phosphorus, available silicate, and exchangeable cations were increased with application of compost and every year application plots. Nitrogen uptake was higher in order of CMSC, ChMSC, SF, and PMSC. Nitrogen use efficiency was higher in order of CMSC, ChMSC, SF, and PMSC. Rice yields was increased in all application plot of CMSC, in every other year application plot ChMSC and PMSC compared with SF($5.07Mg\;ha^{-1}$). Also average rice yield on years were increased in all application plot of CMSC and in every other year application plot ChMSC, while decreased in all application plot of PMSC compared with SF($5.27Mg\;ha^{-1}$). Head rice ratio and perfect grain ratio on hulled rice was high in all application plot of PMSC and in every year, in every other year app lication plot of ChMSC while its lowered percentage of 10~13 caused by application of CMSC compared with SF.

Effect of Ozone Application on Sulfur Compounds and Ammonia Exhausted from Aerobic Fertilization System of Livestock Manure (가축분뇨 호기적 퇴.액비화시 발생하는 기체 중의 황 화합물과 암모니아에 대한 오존처리 효과)

  • Jeong, Kwang Hwa;Whang, Ok Hwa;Khan, Modabber Ahmed;Lee, Dong Hyun;Choi, Dong Yoon;Yu, Yong Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.118-126
    • /
    • 2012
  • In this study, two types of ozone generating experimental instrument were installed in commercial livestock manure fertilization facility, which can treat hundred tons of pig manure in a day. Gas samples to be treated were collected from the upper part of the liquid fertilization system and composting system of the commercial livestock manure fertilization facility. The gas sample was flowed to oxidation reactor through pipe line by suction blower, therefore, contacted with ozone. Ammonia and sulfur compounds of gas samples collected from the inlet and outlet point of the experimental instrument were analyzed. The oxidation effect by the contact with ozone was higher in sulfur compounds than ammonia. Ammonia content was reduced about 10% by ozone contact. Sulfur compounds, on the other hand, reduced significantly while treated with ozone. In case of gas sample collected from liquid fertilization system, the concentrations of hydrogen sulfide ($H_2S$), methyl mercaptan (MM), dimethyl sulfide (DMS), and dimethyl disulfide (DMDS) of inlet gas were 50.091, 4.9089, 27.8109 and 0.4683 ppvs, respectively. After oxidized by ozone, the concentrations of sulfur compounds were 1.2317, 0.3839, 14.7279 and 0.3145 ppvs, respectively. Another sample collected from aerobic composting system was oxidized in the same conditions. The concentrations of $H_2S$, MM, DMS and DMDS of the sample collected from inlet point of the reactor were 40.6682, 1.3675, 24.2458 and 0.8289 ppvs, respectively. After oxidized, the concentrations of $H_2S$, MM, DMS, and DMDS were reduced to 3.013, ND, 8.8998 and 0.3651 ppvs, respectively. By application of another type of ozone, the concentrations of $H_2S$, MM, DMS and DMDS of inlet gas were reduced from 43.397, 1.4559, 3.6021 and 0.4061 to ND, ND, ND, and 0.21ppvs, respectively.

Physicochemical Changes of Food Waste Slurry Co-fermented with Pig Manure Slurry (음식물쓰레기와 돈분 액상물의 혼합부숙시 이화학적 특성 변화)

  • So, Kyu-Ho;Seong, Ki-Seog;Hong, Seung-Gil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.242-248
    • /
    • 2007
  • To find a feasibility of utilization of food waste slurry (FWS) generated during composting, FWS was combined with pig manure slurry (PMS) in various ratios and the change of nutrient contents and offensive odor of the combined slurries before and after fermentation were studied. The initial pH was 7.67 for PMS and 8.45 for FWS. However, during the fermentation, pH increased in the combined slurries with the higher FWS rate among the treatments while decreased in thosewith higher PMS rate. EC of each slurry sample showed that the difference among combined slurry samples has been reduced during fermentation and became stabilized in $21{\sim}23dS\;m^{-1}$ after 180 days. After 180 days fermentation, total nitrogen (T-N) decreased. T-N of mixture with a half and more FWS decreased up to 0.1%, less than the critical level (0.3%). The contents of O.M., T-N, phosphorus, calcium and magnesium decreased with fermentation while those of potash and salinity increased. From initial fermentation until 30 days, a lot of $NH_3$, as an offensive odor, was produced. However, it decreased steadily, except in higher PMS rate. In terms of producing $50{\mu}g\;ml^{-1}$ of $NH_3$, the top layer took 30 days after fertilization with FWS only, 45 days for utilized treatment with F75 (25 % of PMS), 75 days for utilized with F50 (50%) and F25 (75%) and 90 days for PMS only, respectively. $RNH_2$ also had similar trend with $NH_3$ but it was produced continuously as long fermentation proceeded. In terms of $RNH_2$, the decrease in concentration up to $50{\mu}g\;ml^{-1}$ were; 45 days for FWS only(F100), 105 days for F75 utilization, 120 daysfor F50, 165 days for F25, respectively. ethyl mercaptan was produced in PMS until 180 days after fertilization but it was not produced in FWS. Sensory tests as an integrated test of offensive odor were also done. FWS showed lower than 1 after 30 days from initial fermentation, while PMS had still offensive odor even up to 180 days from initial fermentation. It is probably affected by the continuous production of ethyl mercaptan and amines. However, considering in decrease T-N content caused by volatilization while offensive odor intensity according to official standard of fertilizer is lower than 2. Further study on controlling offensive odor needs to be done.

Basic Study Of Composting on Agricultural Animal Waste (농축산폐기물(農畜産廢棄物)의 퇴비화(堆肥化)에 관한 기초적(基礎的) 연구(硏究))

  • Jung, Bing Soo;Gang, Young Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.27-34
    • /
    • 1985
  • Pig manure mixed with straw, sawdust, packing paper and chaff was composted in a batch type enclosed composter without regular mixing for 1 week. The maximum decomposition was obtained in the temperature of $70^{\circ}C$ with an initial moisture content of 50 to 65 %, initial pH of 7 to 8, 0.7 to $2.0l/min{\cdot}kg$ per volatile matter of air supplied and C/N ratio of 60 to 70. The maximum carbon dioxide content in the produced gas was 65 to 85 mg/hr-vm at 45 to $53^{\circ}C$.

  • PDF

Analysis of the Characteristics of Bulking Agents Used in Livestock Manure Composting (축산분뇨 퇴비화에 이용되는 수분조절제의 특성 분석)

  • Kim, Hyeon-Tae;Lee, Min-HO;qasim, Waqas;Lee, Yong-Jin;Kim, Won-Joong;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.52 no.6
    • /
    • pp.81-88
    • /
    • 2018
  • This study analyzed the characteristics of 6 recyclable bulking agents which can replace sawdust and rice hulls that are commonly used in livestock manure composting. The content of all the hazardous chemicals found in the bulking agents used in this experiment was between 0.0 and 34.1 ppm, which was noticeably lesser than the maximum content levels of hazardous substances 5.0~900.0 ppm prescribed by the Rural Development Administration(RDA), which means that the bulking agents would be able to replace sawdusts and rice husks. The water content of the bulking agents ranged from a minimum of 12.4% to a maximum of 16.6% in the original state, which was much less than 60%, the optimal moisture content. These results indicate that they would be able to function fully as bulking agents. Their water absorption rate was in the range of minimum 31.9% ~ maximum 600.0%, which showed huge differences among the types of bulking agents. The most appropriate bulking agent in terms of water absorption rate was wood pellets. It was the highest in the wood briquette manufactured by A, which was followed by C and B in the order. The shear strength of the 5 types of bulking agents in the original state was 271.7 N on an average, the highest figure of all, except for the oak briquette whose shear strength could not be measured and the wood pellets in the absorption state. The shear strength in the dry and absorption states then followed, and were 78.0 N and 27.7 N on an average, respectively. The wood briquette of A recorded considerably lower shear strength than that of B and C. Overall, shear strength tended to increase according to lower water absorption rates. Since pine wood chips and oak cuts have relatively greater shear strength even in the absorbing state than the other materials, they will be able to endure some power in the case of stirring with pig droppings.

Effect of Pig Slurry Fertigation on Soil Chemical Properties and Growth and Development of Cucumber (Cucumis sativus L.) (돈분 액비 관비가 오이의 생육 및 토양화학성에 미치는 영향)

  • Park, Jin-Myeon;Lim, Tae-Jun;Lee, Seong-Eun;Lee, In-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.194-199
    • /
    • 2011
  • This study was conducted to evaluate fertigation effects of pig slurry (PS) and chemical fertilizer (CF) in cucumber by investigating the growth and yield, nutrient content and uptake, nutrient use efficiency, and soil characteristics in greenhouse cultivation. The cropping patterns of cucumber were semi-forcing culture and retarding culture, and the experiment involves four treatments: No fertilizer (NF), $26mg\;L^{-1}$ and $52mg\;L^{-1}$ of N application by slurry composting biofiltration liquefied fertilizer (SCBLF), and $52mg\;L^{-1}$ of N treatment by chemical fertilizer. The difference on the plant height of cucumber between SCBLF and CF treatments was no significant, but fresh weight and dry weight of stem and root were higher in $26mg\;L^{-1}$ SCBLF treatment. The Ca content of the leaf was lower in the treatments of SCBLF and the K content of the root was lower in the $52mg\;L^{-1}$ CF treatment. The Ca content of the stem was lowest in the $52mg\;L^{-1}$ CF treatment and the mineral content of the fruit showed no significant difference. In case of semi-forcing culture, the gross yield was lower in the $52mg\;L^{-1}$ CF treatment and the yield of unmarketable fruit was lower in the SCBLF treatments. The nutrient use efficiency of cucumber is as follows: K (8.3 ~ 30.9%), N (4.2 ~ 13.0%), P (1.9 ~ 2.0%). The SCBLF treatments showed higher figure in the soil pH than that of the CF treatment, while EC and the content of $NO_3$-N were higher in the CF treatment than the former. The content of exchangeable K was higher in the plot treated with $52mg\;L^{-1}$ SCBLF, and there were no significant differences in the content of Ca and Mg between the treatments. In conclusion, it is suggested that the application of liquefied manure made from pig slurry may be able to replace the use of chemical fertilizer in nitrogen and potassium.

The continuous application effect of the food waste composts on the cultivated upland soils and plants (밭에서 음식물류폐기물 활용 퇴비의 연용이 토양 및 작물에 미치는 영향)

  • Kwon, Soon-Ik;So, Kyu-Ho;Hong, Seung-Gil;Kim, Gun-Yeob;Seong, Ki-Seog;Park, Woo-Kyun;Kim, Kwon-Rae;Lee, Deog-Bae;Jung, Kwang-Yong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.71-81
    • /
    • 2009
  • Food waste has been actively used as a composting material in order to reduce the environmental pollution load and to enhance the recycling of resources. In this study, the longterm effects of continuous application of food waste compost to soils on both the crop production and the soil properties were examined to ensure the safety of food waste compost in agricultural use. In addition, we collected the preliminary data for establishing standard application rate of food waste compost for agricultural utilization. Based on conventional nitrogen application rate of chemical fertilizer for crop cultivation, pig manure compost $(24g\;N\;kg^{-1}$, $8g\;P_2O_5\;kg^{-1}$, and $10.4g\;K_2O\;kg^{-1})$ and food waste compost ($20g\;N\;kg^{-1}$, $20.1g\;P_2O_5\;kg^{-1}$, and $6.5g\;K_2O\;kg^{-1}$) were applied to the upland soil in $2{\times}2{\times}2m$ lysimeter in which lettuce (Lactuca sativa var. crispa), Chinese cabbage (Brassica campestris subsp. napus var. pekinensis), red pepper (Capsicum annuum), and potato (Solanum tuberosum) were grown continuously. The crops grown in soils to which food waste compost applied showed better growth responses than the control, whereas some variations were observed in the crops grown in chemical fertilizer treated soils. Continuous application of food waste compost increased the contents of organic matter, nitrogen, and phosphorus, which resulted in improving soil aeration.

Chemical Properties Distributions of Commercial Organic By-product Fertilizers (시판 부산물비료의 화학성 분포)

  • Lee, Chang-Ho;Yoon, Young-Man;Ok, Yong-Sik;Lim, Soo-Kil;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Agricultural recycling of livestock wastes by composting has lots of beneficial effects on crop production and soil fertility. Most of composts are made from pig manure and water content controller such as saw dust, bark, rice hulls etc. by aerobic processing. But the insufficient supply of saw dust, bark etc. cause the indiscreet use of industrial waste having heavy metals and toxic synthetic chemicals. This research investigated the present quality status of organic by-product fertilizers, and suggested the way of quality interpretation under the statistical approaches based on median, mean and weighted average value. Since the data of one hundred of samples for heavy metal contents (Cd, Pb, Cu, and Cr) and OM/N showed extremely left-skewed distribution, the median was more useful than the mean in representing the characteristics of distribiition for each items. The weighted average value will be a useful index for the quality based on the total amount of producing.

Changes and Availability of Inorganic Phosphate during the Composting (Pig Manure) (퇴비화 과정 중 인산의 가용화와 무기태 인산의 변화)

  • Lee, Yu-Ri;Lee, Jong-Eun;Chang, Ki-Woon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.1
    • /
    • pp.127-128
    • /
    • 2003
  • 본 연구는 퇴비화 과정 중 난용성 인산의 가용화와 무기태 인산의 변화를 알아보기 위하여 수행하였다. 비료와 퇴비중의 인산형태는 다른 성분들보다 토양에 흡착 또는 고정되거나 불용화 되는 양이 많아 작물의 흡수량이 적다. 시비된 인산의 흡수율은 낮고, 그 대부분은 난용화되기 때문에 토양에 축적되거나 세탈과 용탈에 의해 수질을 오염화시키는 주원인이 되고 있다. 퇴비화 과정중의 인산형태별 함량변화를 분석조사하여 작물에 시비되는 인산비료와 퇴비의 시용량을 적절하게 조절하여 인산의 과잉 시비량을 저감시키기 위한 연구이다. 돈분을 원료로 한 퇴비화 과정에서 단계별로 퇴비시료를 채취하여 총인산(T-P), 유효인산(Avail. -P)과 무기태인산분획별(Ca-P, Al-P, Fe-P)로 분석한 결과는 다음과 같다. 퇴적더미의 초기부피는 570L였으며, 약 2개월간의 퇴비화를 통해서 시료채취와 미생물등의 분해작용으로 최종부피는 430L정도로 감소하였다. 이는 초기의 부피보다 25% 감소하였다. 퇴적더미의 분해로 인한 용적밀도의 변화를 고려하면, 총인산 함량은 초기 약 17,500mg/kg에서 최종시료는 22,500mg/kg로 증가되었다. 또한 퇴비화가 진행됨에 따라 인산의 가용태가 증가하는 결과를 보였으며, 초기의 유효인산이 4,500mg/kg에서 최종시료에서는 8,900mg/kg으로 증가되었다. 그리고 무기태 인산분획별 인산의 형태별 변화를 조사한 결과, 퇴비화 과정 중 Ca-P의 경우 pH와의 중요한 상관관계를 갖고 있었다. 유기물분해를 통해 유리된 인산과 Ca은 난용태로 전환되는데, 초기의 약 10일 동안 Ca-P의 감소원인은 pH의 감소로 인한 Ca이 유리되는 정도가 낮기 때문인 것으로 해석된다. 초기 Ca-P형태의 인산함량은 11,900mg/kg으로 Fe-P와 Al-P보다 많았다. 또한 퇴비화가 안정화되어 부숙된 최종시료의 무기태 인산분획물 중 Ca-P는 18,000mg/kg로 증가하였으며, Ca-P>Al-P>Fe-P의 순 이었다. 그러나 Al-P와 Fe-P 형태의 무기태인산은 초기의 함량비율보다 다소 감소한 결과를 보였다. 결론적으로, 퇴비화과정 중 단계별 인산함량의 형태전환을 분석한 결과 총인산의 함량은 퇴비화가 안정화될수록 부피감소로 인한 인산함량이 증가하는 경향을 보였지만, 유기물질의 분해로 인한 원료내 인산의 형태가 불용태와 난용태에서 가용태 인산으로 전환되는 것을 도출하였다. 또한 무기태 인산분획물에서는 Ca-P 인산형태가 퇴비화가 진행될수록 증가한다는 결과를 얻었으며, Fe-P와 Al-P는 분해된 유기물의 킬레이트작용으로 감소되었다고 판단되며, 그 존재형태가 경쟁적임을 알 수 있었다. 따라서 화학비료와 퇴비의 시용이 병행될 경우에는 퇴비의 가용태 인산함량뿐만 아니라 무기태 인산의 함량을 분석한 후 인산질비료의 시비량을 조절해야할 것으로 판단된다.

  • PDF