• Title/Summary/Keyword: piezoelectric sensor

Search Result 654, Processing Time 0.026 seconds

A Dynamic Calibration Technique for Piezoelectric Sensors Using Negative Going Dynamic Pressure (부방향 동압력을 이용한 압전형 압력센서의 교정기법)

  • Kim, Eung-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.491-499
    • /
    • 2009
  • The determination of response characteristics for pressure sensors is routinely limited to static calibration against a deadweight pressure standard. The strength of this method is that the deadweight device is a primary standard used to generate precise pressure. Its weakness lies in the assumption that the static and dynamic responses of the sensor in question are equivalent. Differences in sensor response to static and dynamic events, however, can lead to serious measurement errors. Dynamic techniques are required to calibrate pressure sensors measuring dynamic events in milliseconds. In this paper, a dynamic calibration using negative going dynamic pressure is proposed to determine dynamic pressure response for piezoelectric sensors. Sensitivity and linearity of sensor by the dynamic calibration were compared with those by the static calibration. The uncertainty of calibration results and the goodness of fit test of linear regression analysis were presented. The results show that the dynamic calibration is applicable to determine dynamic pressure response for piezoelectric sensors.

Fabrication and Sensorization of a Superelastic Alloy Microrobot Gripper using Piezoelectric Polymer Sensors (초탄성 마이크로 그리퍼의 제작 및 압전폴리머 센서를 이용한 센서화)

  • 김덕호;김병규;강현재;김상민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.251-255
    • /
    • 2003
  • This paper presents the design, fabrication, and calibration of a piezoelectric polymer-based sensorized microgripper. Electro discharge machining technology is employed to fabricate super-elastic alloy based micro gripper. It is tested to present improvement of mechanical performance. For integration of force sensor on the micro gripper, the sensor design based on the piezoelectric polymer PVDF film and fabrication process are presented. The calibration and performance test of force sensor integrated micro gripper are experimentally carried out. The force sensor integrated micro gripper is applied to perform fine alignment tasks of micro opto-electrical components. It successfully supplies force feedback to the operator through the haptic device and plays a main role in preventing damage of assembly parts by adjusting the teaching command.

  • PDF

Development of Shell Element to Analyze an Intelligent Structure with Piezoelectric Sensor/Actuator (압전 감지기/작동기를 포함하는 쉘 요소의 개발)

  • 황우석;오진택;박현철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.225-228
    • /
    • 2001
  • A new three-dimensional thin shell element for the structure containing an integrated distributed piezoelectric sensor and actuator is proposed. A finite element formulation for the static response of the shell with piezoelectric sensor/actuator is derived. The assumed strain formulation and the bubble function improves the performance of the shell element. The verification through the calculation of the static response for the piezoelectic bimorph beam shows that the results agree with those from the theoretical analysis very well.

  • PDF

Active and Semi-Active Vibration Control of Piezoelectric Smart Structures Using a Pseudo-Sensor-Output-Feedback Method (PSOF 방법을 이용한 압전 지능 구조물의 능동 및 반능동 진동제어)

  • 김영식;김영태;오동영
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.70-76
    • /
    • 1999
  • This paper presents a pseudo-sensor-output-feedback(PSOF) method for the vibration suppression of the flexible piezoelectric smart structures. This method reduces the modeling errors using pseudo sensors in the output equation formulation. It also reduces computation time in practice. since the output equation does not need the state observer required in the state space equation. Experimental works are performed for the validation of theoretical predictions with the piezoelectric sensor and actuator bonded on the cantilever beam. An algorithm based on the sliding mode control theory is developed and analyzed for the robustness to the modeling errors and parameter uncertainties. This study also discusses the characteristics of the active and semi-active systems.

  • PDF

Wireless health monitoring of stay cable using piezoelectric strain response and smart skin technique

  • Kim, Jeong-Tae;Nguyen, Khac-Duy;Huynh, Thanh-Canh
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.381-397
    • /
    • 2013
  • In this paper, wireless health monitoring of stay cables using piezoelectric strain sensors and a smart skin technique is presented. For the cables, tension forces are estimated to examine their health status from vibration features with consideration of temperature effects. The following approaches are implemented to achieve the objective. Firstly, the tension force estimation utilizing the piezoelectric sensor-embedded smart skin is presented. A temperature correlation model to recalculate the tension force at a temperature of interest is designed by correlating the change in cable's dynamic features and temperature variation. Secondly, the wireless health monitoring system for stay cables is described. A piezoelectric strain sensor node and a tension force monitoring software which is embedded in the sensor are designed. Finally, the feasibility of the proposed monitoring technique is evaluated on stay cables of the Hwamyung Grand Bridge in Busan, Korea.

Active-passive control of flexible sturctures using piezoelectric sensor/actuator (압전형 센서/액추에이터를 이용한 진동구조물의 능동-수동제어)

  • 고병식
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.313-325
    • /
    • 1995
  • Two active/passive vibration dampers were designed to control a cantilever beam first mode of vibration. The active element was a piezoelectric polymer, polyvinlidene fluoride (PVDF). The passive damping was provided by the application of a viscoelastic layer on the surface of the steel beam. Two substantially different damper configurations were designed and tested. One damper consisted of a piezoelectric actuator bonded to one face of the beam, with a viscoelastic layer applied to the other surface of the beam. The second one was composed of a layer viscoeastic layer with one surface bonded to the beam, and with other being constrained by nine piezoelectric actuators connected in parallel. A control law based on the sign of the angular velocity of the cantilever beam was implemented to control the beam first mode of vibration. The piezoelectric sensor output was digitally differentiated to obtain the transverse linear velocity, and its sign was used in the control algorith. Two dampers provided the system a damping increase of a factor of four for the first damper and three for the second damper. Both dampers were found to work well at low levels of vibration, suggesting that they can be used effectively to prevent resonant vibrations in flexible structure from initiating and building up.

  • PDF

A study of piezoelectric element for AE sensor using PZT ceramics (PZT세라믹을 이용한 AE센서의 압전소자 연구)

  • Kwon, O.D.;Yun, Y.J.;Yoo, J.S.;Kang, S.H.;Lim, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.173-176
    • /
    • 2004
  • The piezoelectric ceramics for AE sensor piezoelectric devices are desirable to possess higher resonance vibrations. The compositions of $0.9Pb(Zr_xTi_{1-x})O_3-0.1Pb(Mn_{1/3}Nb_{1/3}Sb_{1/3})O_3$ (PZT-PMNS) in this work are selected for obtaining especially large electromechanical coupling factor, high mechanical quality factor and high Curie temperature. This ceramic has higher piezoelectric activity and higher electromechanical coupling factor, but the ceramic has lower Curie temperature. The piezoelectric and dielectric characteristics of PZT-PMNS ternary system are investigated as functions of $Ti^{2+}$, $Zi^{2+}$ mol rate. As the results, MPB(morphotropic phase boundary) in this piezoelectric ceramic is x=0.522. Resonance vibrations of PZT ceramics are investigated as ball-bearing drop test. For the use of AE sensor that driving with pre-amplifier, filter circuit after packed this ceramic and an elastic body.

  • PDF

Resonant Displacement and Piezoelectric Properties of Thickness Shear Mode Piezoelectric Devices According to Length/Thickness Ratio (길이와 두께 비에 따른 두께 전단모드 압전소자의 공진 변위 및 압전특성)

  • Park, Min-Ho;Yoo, Ju-Hyun;Hong, Jae-Il;Jeong, Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.463-467
    • /
    • 2011
  • In this study, thickness shear mode piezoelectric devices for AE sensor with excellent displacement and sensitivity characteristics were simulated using ATILA FEM program, and then fabricated. Displacement and electro mechanical coupling factors of the piezoelectric devices were investigated. The simulation results showed that excellent displacement and electromechanical coupling factor was obtained when the ratio of Length/Thickness was 1. The piezoelectric device of L/T= 1 exhibited the optimum values of fr= 150 kHz, displacement= $6.23{\times}10^{-8}$[m], $k_{15}$= 0.598. The results show that the thickness shear mode piezoelectric device is a promising candidate for the application of AE sensor piezoelectric device.

Flexible Energy Harvesting Device Based on Porous Piezoelectric Sponge (다공성 압전 스펀지를 이용한 플렉서블 에너지 하베스팅 소자 개발)

  • Dong Hun, Heo;Dong Yeol, Hyeon;Sung Cheol, Park;Kwi-Il, Park
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.508-514
    • /
    • 2022
  • Piezoelectric composite films which are enabled by inorganic piezoelectric nanomaterials-embedded polymer, have attracted enormous attention as a sustainable power source for low powered electronics, because of their ease of fabrication and flexible nature. However, the absorption of applied stress by the soft polymeric matrices is a major issue that must be solved to expand the fields of piezoelectric composite applications. Herein, a flexible and porous piezoelectric composite (piezoelectric sponge) comprised of BaTiO3 nanoparticles and polydimethylsiloxane was developed using template method to enhance the energy conversion efficiency by minimizing the stress that vanishes into the polymer matrix. In the porous structure, effective stress transfer can occur between the piezoelectric active materials in compression mode due to direct contact between the ceramic particles embedded in the pore-polymer interface. The piezoelectric sponge with 30 wt% of BaTiO3 particles generated an open-circuit voltage of ~12 V and a short-circuit current of ~150 nA. A finite element method-based simulation was conducted to theoretically back up that the piezoelectric output performance was effectively improved by introducing the sponge structure. Furthermore, to demonstrate the feasibility of pressure detecting applications using the BaTiO3 particles-embedded piezoelectric sponge, the composite was arranged in a 3 × 3 array and integrated into a single pressure sensor. The fabricated sensor array successfully detected the shape of the applied pressure. This work can provide a cost-effective, biocompatible, and structural strategy for realizing piezoelectric composite-based energy harvesters and self-powered sensors with improved energy conversion efficiency.

Monitoring of Low-velocity Impact Damage Initiation of Gr/Ep Panel Using Piezoelectric Thin Film sensor (압전필름센서를 이용한 복합재 평판의 저속충격 손상개시 모니터링)

  • 이관호;박찬익;김인걸;이영신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.174-178
    • /
    • 2001
  • The piezoelectric thin film sensor can be used to interpret variations in structural and material properties, e.g. for structural integrity monitoring and assessment. To illustrate one of this potential benefit, PVDF film sensors are used for monitoring impact damage initiation in Gr/Ep composite panel. Both PVDF film sensors and strain gages are surface mounted to the Gr/Ep specimens. A series of impact test at various impact energy by changing impact mass and height is performed on the instrumented drop weight impact tester. The sensor responses are carefully examined to predict the onset of impact damage such as matrix cracking, delamination, and fiber breakage, etc. Test results show that the particular waveforms of sensor signals implying the damage initiation and development are detected above the damage initiation impact energy. As expected, the PVDF film sensor is found to be more sensitive to impact damage initiation event than the strain gage.

  • PDF