• 제목/요약/키워드: piezoelectric effect

검색결과 650건 처리시간 0.022초

유비쿼터스 센서네트워크를 위한 압전효과 기반의 무구속 휴대용 풍력 전원 장치 (Use of Piezoelectric Effect in Portable Loadless Wind-Power Source for Ubiquitous Sensor Networks)

  • 장형관;김대중;박정열
    • 대한기계학회논문집B
    • /
    • 제34권6호
    • /
    • pp.623-628
    • /
    • 2010
  • 본 논문은 풍력에 의해 구동되는 압전효과 기반의 무구속 휴대용 전원 장치를 제안한다. 기계적 에너지를 효율적으로 변환하는 메커니즘의 한가지로 기계적 에너지를 전기적 에너지로 변환하는 압전효과를 이용하는 방법이 있다. 압전효과는 주기적으로 변하는 응력을 필요로 하지만, 자연 바람은 거의 일정한 속도를 보이거나, 변화하더라도 매우 느리고 불규칙적인 주파수를 갖기 때문에, 효과적으로 전기적 에너지를 얻어내기 힘들다. 본 연구에서는 바람을 프로펠러에 통과시켜, 손쉽게 주기적으로 변하는 응력을 만들어내고, 이를 압전외팔보에 전달하여 효율적으로 에너지를 변환하였다. 본 연구결과는 유비쿼터스 센서네트워크 시스템에 대한 에너지 공급의 실질적인 해결책이 되리라고 기대된다.

Effect of Mn on Dielectric and Piezoelectric Properties of 71PMN-29PT [71Pb(Mg1/3Nb2/3)O3-29PbTiO3] Single Crystals and Polycrystalline Ceramics

  • Oh, Hyun-Taek;Joo, Hyun-Jae;Kim, Moon-Chan;Lee, Ho-Yong
    • 한국세라믹학회지
    • /
    • 제55권2호
    • /
    • pp.166-173
    • /
    • 2018
  • In order to investigate the effect of Mn on the dielectric and piezoelectric properties of PMN-PT [$Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$], four different types of 71PMN-29PT samples were prepared using the solid-state single crystal growth (SSCG) method: (1) Undoped single crystals, (2) undoped polycrystalline ceramics, (3) Mn-doped single crystals, and (4) Mn-doped polycrystalline ceramics. In the case of single crystals, the addition of 0.5 mol% Mn to PMN-PT decreased the dielectric constant ($K_3{^T}$), piezoelectric charge constant ($d_{33}$), and dielectric loss (tan ${\delta}$) by about 50%, but increased the coercive electric field ($E_C$) by 50% and the electromechanical quality factor ($Q_m$) by 500%, respectively. The addition of Mn to PMN-PT induced an internal bias electric field ($E_I$) and thus specimens changed from piezoelectrically soft-type to piezoelectrically hard-type. This Mn effect was more significant in single crystals than in ceramics. These results demonstrate that Mn-doped 71PMN-29PT single crystals, because they are piezoelectrically hard and simultaneously have high piezoelectric and electromechanical properties, have great potential for application in fields of SONAR transducers, high intensity focused ultrasound (HIFU), and ultrasonic motors.

Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdalla, Waleed S.;Kabeel, Abdallah M.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.141-151
    • /
    • 2020
  • This manuscript tends to investigate influences of nanoscale and surface energy on a static bending and free vibration of piezoelectric perforated nanobeam structural element, for the first time. Nonlocal differential elasticity theory of Eringen is manipulated to depict the long-range atoms interactions, by imposing length scale parameter. Surface energy dominated in nanoscale structure, is included in the proposed model by using Gurtin-Murdoch model. The coupling effect between nonlocal elasticity and surface energy is included in the proposed model. Constitutive and governing equations of nonlocal-surface perforated Euler-Bernoulli nanobeam are derived by Hamilton's principle. The distribution of electric potential for the piezoelectric nanobeam model is assumed to vary as a combination of a cosine and linear variation, which satisfies the Maxwell's equation. The proposed model is solved numerically by using the finite-element method (FEM). The present model is validated by comparing the obtained results with previously published works. The detailed parametric study is presented to examine effects of the number of holes, perforation size, nonlocal parameter, surface energy, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric perforated nanobeams. It is found that the effect of surface stresses becomes more significant as the thickness decreases in the range of nanometers. The effect of number of holes becomes significant in the region 0.2 ≤ α ≤ 0.8. The current model can be used in design of perforated nano-electro-mechanical systems (PNEMS).

A comprehensive analysis on the discretization method of the equation of motion in piezoelectrically actuated microbeams

  • Zamanian, M.;Rezaei, H.;Hadilu, M.;Hosseini, S.A.A.
    • Smart Structures and Systems
    • /
    • 제16권5호
    • /
    • pp.891-918
    • /
    • 2015
  • In many of microdevices a part of a microbeam is covered by a piezoelectric layer. Depend on the application a DC or AC voltage is applied between upper and lower side of the piezoelectric layer. A common method in many of previous works for evaluating the response of these structures is discretizing by Galerkin method. In these works often single mode shape of a uniform microbeam i.e. the microbeam without piezoelectric layer has been used as comparison function, and so the convergence of the solution has not been verified. In this paper the Galerkin method is used for discretization, and a comprehensive analysis on the convergence of solution of equation that is discretized using this comparison function is studied for both clamped-clamped and clamped-free microbeams. The static and dynamic solution resulted from Galerkin method is compared to the modal expansion solution. In addition the static solution is compared to an exact solution. It is denoted that the required numbers of uniform microbeam mode shapes for convergence of static solution due to DC voltage depends on the position and thickness of deposited piezoelectric layer. It is shown that when the clamped-clamped microbeam is coated symmetrically by piezoelectric layer, then the convergence for static solution may be obtained using only first mode. This result is valid for clamped-free case when it is covered by piezoelectric layer from left clamped side to the right. It is shown that when voltage is AC then the number of required uniform microbeam shape mode for convergence is much more than the number of required mode in modal expansion due to the dynamic effect of piezoelectric layer. This difference increases by increasing the piezoelectric thickness, the closeness of the excitation frequency to natural frequency and decreasing the damping coefficient. This condition is often indefeasible in microresonator system. It is concluded that discreitizing the equation of motion using one mode shape of uniform microbeam as comparison function in many of previous works causes considerable errors.

고출력 압전 디바이스 응용을 위한 PZ-PT-PMN계 압전 세라믹의 특성 (The Characteristics of PZ-PT PMN Piezoelectric Ceramics for Application to High Power Device)

  • 홍종국;;이종섭;채홍인;윤만순;임기조;정수현
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권3호
    • /
    • pp.156-156
    • /
    • 2000
  • The piezoelectric properties and the doping effect for $0.95Pb(Zr_xTi_{l-x})O_3+0.O5Pb(Mn_{1/3}Nb_{2/3})O_3$compositions were studied. Also, the heat generation and the change of electromechanical characteristics, the important problem in practical usage, were investigated under high electric field driving. As a experiment results under low electric field, the value of $k_p$ and ${\varepsilon}_{33}^T$ were maximized, but $Q_m$ was minimized $(k_p=0.57, Q_m=1550)$ in the composition of x=0.51. In order to increase the values of $Q_m$, $Nb_2O_5$ was used as a dopant. As the result of that, the grain size was suppressed and the uniformity of grain was improved. Also, the values of $k_p$ decreased, and the values of $Q_m$ increased with doping concentration of $Nb_2O_5$ . As a experiment results under high electric field driving, when vibration velocity was ower than 0.6[m/s], the temperature increase was 20[℃], and the change ratio of mechanical quality factor was less than 10[%]. So, its electromechanical characteristics was very stable. Conclusively, piezoelectric ceramic composition investigated at this paper is suitable for application to high power piezoelectric devices.

SnO2가 첨가된 저온소결 (Na,K,Li)(Nb,Sb,Ta)O3계 세라믹스의 유전 및 압전 특성 (Dielectric and Piezoelectric Properties of Low Temperature Sintering (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics Doped with SnO2)

  • 이광민;류주현;이지영
    • 한국전기전자재료학회논문지
    • /
    • 제28권11호
    • /
    • pp.690-693
    • /
    • 2015
  • In this paper, in order to develop excellent Pb-free composition ceramics for ultrasonic sensor. The $SnO_2$-doped ($Na_{0.525}K_{0.443}Li_{0.037})(Nb_{0.883}Sb_{0.08}Ta_{0.037})O_3$)(abbreviated as NKL-NST) ceramics have been synthesized using the ordinary solid state reaction method. The effect of $SnO_2$-doping on their dielectric and piezoelectric properties was investigated. The ceramics doped with 0 wt% $SnO_2$ have the optimum values of piezoelectric constant($d_{33}$), piezoelectric figure of merit($d_{33}.g_{33}$), planar piezoelectric coupling coefficient($k_p$) and density : $d_{33}=195[pC/N]$, $d_{33}.g_{33}=5.62pm^2/N.kp=0.40$, $density=4.436[g/cm^3]$. suitable for duplex ultrasonic sensor application.

하소온도가 저온소결 PMN-PZN-PZT 세라믹스의 압전특성에 미치는 영향 (Effect of Calcination Temperature on the Piezoelectric Characteristics of Low Temperature Sintering PMN-PZN-PZT ceramics)

  • 이일하;이상호;류주현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.214-216
    • /
    • 2006
  • In this study, in order to develop the composition ceramics for low loss and low temperature sintering multilayer piezoelectric actuator, PMN-PZN-PZT ceramics were fabricated using two stage calcination method and $Li_2CO_3$, $Bi_2O_3$ and CuO as sintering aids and their piezoelectric characteristics were investigated according to the 2nd calcination and sintering temperature. At the calcination temperature of $750^{\circ}C$ and sintering temperature of $930^{\circ}C$, density, electromechanical coupling factor ($k_p$), mechanical quality factor ($Q_m$), Dielectric constant (${\varepsilon}_r$) and piezoelectric constant ($d_{33}$) of specimen showed the optimum value of $7.94g/cm^2$ 0.581, 1554, 1555 and 356pC/N, respectively for multilayer piezoelectric actuator application.

  • PDF

적층 압전변압기용 저온소결 PMN-PZT 압전세라믹의 $Li_2CO_3$ 첨가에 따른 유전 및 압전특성 (Dielectric and piezoelectric properties of low temperature sintering PMN-PZT ceramics for multilayer piezoelectric transformer with $Li_2CO_3$ addition)

  • 이창배;류주현;박창엽;정광현;정영호;백동수;정회승
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.821-825
    • /
    • 2004
  • In this paper, in order to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, PMN-PZT ceramcis using $Li_2CO_3$ and $Bi_2O_3$ as sintering aids were manufactured, and their microstructural, dielectric and piezoelectric properties were investigated. The sintering aids were proved to lower the sintering temperature of piezoelectric ceramics due to the effect of $LiBiO_2$ liquid phase. At 0.1wt% $Li_2CO_3$ added specimen sintered at $970[^{\circ}C]$, electromechanical coupling factor(Kp), mechanical quality factor(Qm) and dielectric constant showed the optimum values of 0.50, 2,413 and 1,245, respectively, for multilayer piezoelectric transformer application.

  • PDF

캔틸레버 구조해석을 통한 압전소자의 최대 전력량 산출 (Cantilever Structural Analysis for Optimal Piezoelectric Power Harvesting)

  • 임근수;조성식;김수현;박우태
    • 마이크로전자및패키징학회지
    • /
    • 제20권4호
    • /
    • pp.31-34
    • /
    • 2013
  • 외팔보의 형상적인 해석과 압전효과에 의거하여, 최대 전력량 산출을 위한 에너지 수확기를 설계하였다. 두가지의 외팔보 형상으로 에너지 수확기의 구조가 설계되었다. 에너지 수확기의 성능을 좌우하는 주요 변수는 외팔보 형상과 끝단에 부착된 질량이다. 수확되는 전하량은 압전재료의 압전상수와 외팔보의 기계적인 변형량에 비례한다.

전자기장과 열하중을 받는 복합재료 평판의 압전제어에 따른 동특성 변화 (Variation of Dynamic Characteristics of Composite Plates Subjected to Electromagnetic and Thermal Fields via Piezoelectric Control)

  • 박상윤;송오섭
    • Composites Research
    • /
    • 제29권6호
    • /
    • pp.379-387
    • /
    • 2016
  • 본 논문에서 전자기장과 열 하중을 받는 복합재료 평판에 대하여 압전재료를 이용한 압전제어를 수행하였다. 구조물에 가해지는 전자기장과 열 하중, 그리고 구성방정식에서 고려되는 압전효과가 모두 포함된 지배방정식을 FSDT 판 이론에 기초하여 Hamilton 원리에 의하여 유도하였다. 평판의 경계면에서 발생하는 제어력과 제어 모멘트는 비례제어 및 속도제어 로직에 의하여 적용되었다. 전자기장과 열 하중, 그리고 압전효과가 복합재료 평판의 동특성에 미치는 영향에 대하여 고찰하고, 압전효과 및 복합재료의 섬유각 변화를 통하여 복합재 구조물의 동특성을 효과적으로 제어 가능함을 확인하였다.