• Title/Summary/Keyword: pier bridge

Search Result 489, Processing Time 0.022 seconds

A Case Study on the AC Corrosion Effects for Bridges of Metallic Structure (철제구조 교량의 전식영향 연구)

  • Ha, Tae-Hyun;Lee, Hyun-Goo;Bae, Jeong-Hyo;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.356-358
    • /
    • 2001
  • In general, when power lines, D/L and T/L are running parallel with bridge of metallic structure or crossing each other, AC corrosion is occur due to AC interference. This paper presents the results of AC interference mechanism, decision criteria of AC interference, and AC corrosion effects by analysis of AC induction voltage on pier and abut of bridge.

  • PDF

SEISMIC RESPONSE CHARACTERISTICS OF THE MULTI-SPAN CONTINUOUS GBRIDGE WITH SHEAR KEYS (전단키와 있는 다경간 연속교의 지진응답특성)

  • 이지훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.120-127
    • /
    • 1998
  • This paper deals with the dynamic responses of the multi-span continuous bridge with longitudinal shear keys. It is motivated by a need to understand the effects of longitudinal shear keys which may be used for the reduction of the longitudinal seismic force in continuous bridges. The results show that (1) The force reduction of fixed pier is proportional to the ratio of gap size and elastic maximum displacement of the bridges without shear keys ; (2) The thermal movement has little effect on the response of the continuous bridges with shear keys. Also the simplified equation is proposed to calculate the maximum response of the continuous bridges with longitudinal shear keys. The equation requires only the elastic analysis results of the bridge and the gap size between superstructure and shear keys.

  • PDF

Automated Digital Engineering Modeling of Prefabricated Bridges with Parameterized Straight Alignments (직선교량에 대한 디지털엔지니어링 모델의 선형연동 프로그램 개발)

  • Choi, Jae-Woong;Kang, Jeon-Yong;Kim, Hyun-Min
    • Journal of KIBIM
    • /
    • v.10 no.4
    • /
    • pp.40-49
    • /
    • 2020
  • This report describes the development of a program that can be linked to an alignment and extracts related information using a prefab structured digital engineering model. The subject bridge was set as a straight alignment, the Superstructure type as Precast girder and the Substructure type as Precast pier and Cast-in-situ Abutment. We identified the variables required to create a digital engineering model and reviewed them to create the digital engineering model by entering them as numerical values in the program. In addition, it is configured so that the variables linked to the alignment can be entered numerically. The quantity takeoff can be calculated when the design is complete. The purpose of the program development presented in this report is to enable the designers to select the optimal alternative by designing a bridge that best fits their current situation, extracting the relevant information and then by providing it to the manufacturer and construction company.

Random vibration analysis of train-slab track-bridge coupling system under earthquakes

  • Zeng, Zhi-Ping;He, Xian-Feng;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Ling-Kun;Xu, Wen-Tao;Lou, Ping
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.1017-1044
    • /
    • 2015
  • This study aimed to investigate the random vibration characteristic of train-slab track-bridge interaction system subjected to both track irregularities and earthquakes by use of pseudo-excitation method (PEM). Each vehicle subsystem was modeled by multibody dynamics. A three-dimensional rail-slab- girder-pier finite element model was created to simulate slab track and bridge subsystem. The equations of motion for the entire system were established based on the constraint condition of no jump between wheel and rail. The random load vectors of equations of motion were formulated by transforming track irregularities and seismic accelerations into a series of deterministic pseudo-excitations according to their respective power spectral density (PSD) functions by means of PEM. The time-dependent PSDs of random vibration responses of the system were obtained by step-by-step integration method, and the corresponding extreme values were estimated based on the first-passage failure criterion. As a case study, an ICE3 high-speed train passing a fifteen-span simply supported girder bridge simultaneously excited by track irregularities and earthquakes is presented. The evaluated extreme values and the PSD characteristic of the random vibration responses of bridge and train are analyzed, and the influences of train speed and track irregularities (without earthquakes) on the random vibration characteristic of bridge and train are discussed.

Analysis of Luminance distribution of Illuminated Bridges by View (조망의 변화에 따른 교량경관조명의 휘도특성분석)

  • Choi, Yoon-Seok;Jeong, In-Young;Ahn, Hyun-Tae;Kim, Jeong-Tai
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.1-8
    • /
    • 2006
  • The study is to analyze the surface luminance of the illuminated bridges according to the change of view point using luminance measurements with instrument CS-100 and ProMetric 1400. For the purpose the illuminated bridges of the structure type were sleceted. Also, the view points were classified the three types which are a perspective view, a building view, a driver view. The luminance of the surrounding sky, surface of river, upper structure or bridge, girder side, and pier or the objects was measured. As a result of this study, The Kwangjin and Dongho Bridge showed the luminance distribution of a perspective view was high. And the Olympic and Dongjac bridge the luminance distribution of building view was high. The luminance effect of the girder bridge that has no upper structure was distinguished for the perspective view, and the cable-stayed girder bridge and the arch bridge were characterized as the building view.

System-Level Seismic Fragility Evaluation of Bridge Considering Aging Effects (노후도를 고려한 교량의 시스템-수준 지진취약도 평가)

  • Kong, Sina;Moon, Jiho;Song, Jong-Keol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.149-158
    • /
    • 2022
  • As a bridge ages, its mechanical properties and structural performance deteriorate, degrading its seismic performance during a strong earthquake. In this study, the aging of piers and bridge bearings was quantified in several stages and reflected in the analysis model, enabling the evaluation of the member-level seismic fragility of these bearings. Moreover, by assuming that the failure mechanism of a bridge system is a series system, a method for evaluating the system-level seismic fragility based on the member-level seismic fragility analysis result is formulated and proposed. For piers with rubber and lead-rubber bearings (members vulnerable to aging effects), five quantitative degrees of aging (0, 5, 10, 25, and 40%) are assumed to evaluate the member-level seismic fragility. Then, based on the result, the system-level seismic fragility evaluation was implemented. The pier rather than the bridge bearing is observed to have a dominant effect on the system-level seismic fragility. This means that the seismic fragility of more vulnerable structural members has a dominant influence on the seismic fragility of the entire bridge system.

Development of Defect-Repair Method-Cost Mapping Algorithm of Concrete Bridge Using BMS Data (BMS 데이터를 활용한 콘크리트 교량의 결함-공법-비용 매핑 알고리즘 개발)

  • Lee, Changjun;Park, Wonyoung;Cha, Yongwoon;Jang, Young-Hoon;Park, Taeil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.267-275
    • /
    • 2023
  • As aged infrastructures have been increased, the importance of accurate maintenance costs and proper budget allocation for infrastructure become prominent under limited resources. This study proposed a mapping algorithm between representative defects, repair methods, and the estimated maintenance costs for concrete bridges. In this regard, using BMS (Bridge Management System) data analysis, bridge repair methods were classified and matched with defects according to their locations, types, and sizes. In addition, the maintenance costs were estimated based on the amount of work-load and quantity per unit using CSPR (Cost Standard Production Rate). As a result, the level of accuracy was an average of 85.1 % compared with the actual bill of quantity for Seoul bridge maintenance. The accuracy of maintenance costs is expected to be enhanced by considering the various site conditions such as pier height, extra charge conditions, additional equipment, etc.

Maintenance Planning for Deteriorating Bridge using Preference-based Optimization Method (선호도기반 최적화방법을 이용한 교량의 유지보수계획)

  • Lee, Sun-Young;Koh, Hyun-Moo;Park, Wonsuk;Kim, Hyun-Joong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.223-231
    • /
    • 2008
  • This research presents a new maintenance planning method for deteriorating bridges considering simultaneously the minimization of the maintenance cost and maximization of the bridge performance. Optimal maintenance planning is formulated as a multi-objective optimization problem that treats the maintenance cost as well as the bridge performance such as the condition grade of the bridge deck, girder and pier. To effectively address the multi-objective optimization problem and decision making process for the obtained solution set, we apply a genetic algorithm as a numerical searching technique and adopt a preference-based optimization method. A numerical example for a typical 5-span prestressed concrete girder bridge shows that the maintenance cost and the performance of the bridge can be balanced reasonably without severe trade-offs between each objectives.

Arrangement of Connections and Piers and Earthquake Resistant Capacity of Typical Bridges (연결부분 및 교각의 배열과 일반교량의 내진성능)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.207-212
    • /
    • 2015
  • Bridges are designed and constructed as infrastructures in order to overcome topographical obstructions for fast and smooth transfer of human/material resources. Therefore the shape and size of piers constructed along the longitudinal bridge axis should be restricted by topographical conditions. Action forces of connections and piers are affected by pier shapes and sizes together with connection arrangement which decides load carrying path under earthquakes. In this study a typical bridge is modelled with steel bearings and reinforced concrete piers and seismic analyses are performed with analysis models with different arrangement of steel bearings and piers. From analysis results ductile failure mechanisms for all analysis models are checked based on strength/action force ratios of steel bearings and pier columns. In this way the influences of arrangement of connections and piers on the earthquake resistant capacity of typical bridges are figured out in view of forming ductile failure mechanism.

Nonlinear response of the pile group foundation for lateral loads using pushover analysis

  • Zhang, Yongliang;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Wang, Yi;Liu, Zhengnan
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.273-286
    • /
    • 2020
  • The pile group foundation is widely used for gravity pier of high-speed railway bridges in China. If a moderate or strong earthquake occurs, the pile-surrounding soil will exhibit obvious nonlinearity and significant pile group effect. In this study, an improved pushover analysis model for the pile group foundation with consideration of pile group effect is presented and validated by the quasi-static test. The improved model uses simplified springs to simulate the soil lateral resistance, side friction and tip resistance. PM (axial load-bending moment) plastic hinge model is introduced to simulate the impact of the axial force changing of pile group on their elastic-plastic characteristics. The pile group effect is considered in stress-stain relations of the lateral soil resistance with a reduction factor. The influence factors on nonlinear characteristics and plastic hinge distribution of the pile group foundation are discussed, including the pier height, longitudinal reinforcement ratio and stirrup ratio of the pile, and soil mechanical parameters. Furthermore, the displacement ductility factor, resistance increase factor and yielding stiffness ratio are provided to evaluate the seismic performance of soil-pile system. A case study for the pile group foundation of a railway simply supported beam bridge with a 32 m-span is conducted by numerical analysis. It is shown that the ultimate lateral force of pile group is not determined by the yielding force of the single one in these piles. Therefore, the pile group effect is essential for the seismic performance evaluation of the railway bridge with pile group foundation.