DOI QR코드

DOI QR Code

Development of Defect-Repair Method-Cost Mapping Algorithm of Concrete Bridge Using BMS Data

BMS 데이터를 활용한 콘크리트 교량의 결함-공법-비용 매핑 알고리즘 개발

  • Lee, Changjun (Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Wonyoung (Korea Institute of Civil Engineering and Building Technology) ;
  • Cha, Yongwoon (Korea Institute of Civil Engineering and Building Technology) ;
  • Jang, Young-Hoon (Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Taeil (Korea Institute of Civil Engineering and Building Technology)
  • 이창준 (한국건설기술연구원 건설정책연구소) ;
  • 박원영 (한국건설기술연구원 건설정책연구소) ;
  • 차용운 (한국건설기술연구원 건설정책연구소) ;
  • 장영훈 (한국건설기술연구원 건설정책연구소) ;
  • 박태일 (한국건설기술연구원 건설정책연구소)
  • Received : 2022.12.21
  • Accepted : 2023.01.31
  • Published : 2023.04.01

Abstract

As aged infrastructures have been increased, the importance of accurate maintenance costs and proper budget allocation for infrastructure become prominent under limited resources. This study proposed a mapping algorithm between representative defects, repair methods, and the estimated maintenance costs for concrete bridges. In this regard, using BMS (Bridge Management System) data analysis, bridge repair methods were classified and matched with defects according to their locations, types, and sizes. In addition, the maintenance costs were estimated based on the amount of work-load and quantity per unit using CSPR (Cost Standard Production Rate). As a result, the level of accuracy was an average of 85.1 % compared with the actual bill of quantity for Seoul bridge maintenance. The accuracy of maintenance costs is expected to be enhanced by considering the various site conditions such as pier height, extra charge conditions, additional equipment, etc.

최근 30년 이상 노후화된 국내 인프라의 증가로 한정된 예산 내에서 인프라 유지관리를 위한 정확한 유지관리 비용산출과 그에 따른 적절한 예산분배의 중요성이 증대되고 있다. 이에 본 연구에서는 콘크리트 교량의 대표적인 결함과 이에 대한 보수보강 공법들을 매칭하고 유지보수에 필요한 비용을 산정하였다. 표준품셈과 BMS (Bridge Management System) 데이터 분석을 통해 교량의 보수보강 공법을 분류하였으며, 결함의 위치와 종류, 크기에 따라 결함-공법을 매칭하였다. 그리고 표준품셈을 기준으로 단위당 작업량과 물량을 계산하여 노무비, 경비, 재료비를 구분하여 산출하였다. 서울시 교량 유지보수 내역서와 비교를 통해 평균 예측 정확도가 85.1 %가 나왔으며, 결함의 간단한 조건을 통해 유지보수 비용을 파악할 수 있다. 향후 현장 조건을 고려한 장비 및 야간작업 여부를 추가하여 더 높은 유지보수 비용을 파악할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원 (주요사업) 사업으로 수행되었습니다 (과제번호 20230079-001, 건설정책 및 건설관리 발전전략).

References

  1. Cha, K. H., Kim, J. H. and Kong, J. S. (2015). "Development of the deterioration models for the port structures by the multiple regression analysis and markov chain." Journal of the Computational Structural Engineering Institute of Korea, Vol. 28, No. 3, pp. 229-239. DOI: https://doi.org/10.7734/COSEIK.2015.28.3.229 (in Korean).
  2. Ghodoosi, F., Abu-Samra, S., Zeynalian, M. and Zayed, T. (2018). "Maintenance cost optimization for bridge structures using system reliability analysis and genetic algorithms." Journal of Construction Engineering and Management, Vol. 144, No. 2, 04017116. DOI: 10.1061/(ASCE)CO.1943-7862.0001435.
  3. Gui, C., Zhang, J., Lei, J., Hou, Y., Zhang, Y. and Qian, Z. (2021). "A comprehensive evaluation algorithm for project-level bridge maintenance decision-making." Journal of Cleaner Production, Vol. 289, 125713. DOI: https://doi.org/10.1016/j.jclepro.2020.125713.
  4. Jaafaru, H. and Agbelie, B. (2022). "Bridge maintenance planning framework using machine learning, multi-attribute utility theory and evolutionary optimization models." Automation in Construction, Vol. 141, 104460. DOI: https://doi.org/10.1016/j.autcon.2022.104460.
  5. Jeong, Y. S., Kim, W. S., Lee, I. K. and Lee, J. H. (2016). "Bridge life cycle cost analysis of preventive maintenance." Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 20, No. 6, pp. 1-9. DOI: https://doi.org/10.11112/jksmi.2016.20.6.001 (in Korean).
  6. Kim, D. J. and Lee, M. J. (2017). "Basic study for development of risk based bridge maintenance priority decision model." Korean Journal of Construction Engineering and Management, Vol. 18, No. 2, pp. 108-116. DOI: https://doi.org/10.6106/KJCEM.2017.18.2.108 (in Korean).
  7. Kim, J. H., Jung, I. S., Yun, W. G., Kim, J. Y. and Park, I. S. (2021). "Preliminary analysis on artificial intelligence-based methodology for selecting repair and rehabilitation methods of bridges." Journal of Korean Society of Industry Convergence, Vol. 24, No. 6, pp. 861-872. DOI: https://doi.org/10.21289/KSIC.2021.24.6.861 (in Korean).
  8. Kim, J. K. and Jang, I. Y. (2017). "Proposal of domestic road bridge deck deterioration models and forecast of replacement demand." Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 21, No. 4, pp. 61-68. DOI: https://doi.org/10.11112/jksmi.2017.21.4.061 (in Korean).
  9. Lee, D. H., Kim, J. W., Jun, T. H., Jeong, W. S. and Park, K. T. (2016). "Development of performance prediction method for bridge and tunnel management decision-making." Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 20, No. 1, pp. 33-40. DOI: https://doi.org/10.11112/jksmi.2016.20.1.033 (in Korean).
  10. Lee, J. H., Choi, Y. R., Ann, H. J. and Kong, J. S. (2019). "The preventive maintenance strategy in operation stage of bridge using bayesian inference." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 39, No. 1, pp. 135-146. DOI: https://doi.org/10.12652/Ksce.2019.39.1.0135 (in Korean).
  11. Lee, J. H., Lee, K. Y., Ahn, S. M. and Kong, J. S. (2018). "Proposal of maintenance scenario and feasibility analysis of bridge inspection using bayesian approach." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 38, No. 4, pp. 505-516. DOI: https://doi.org/10.12652/Ksce.2018.38.4.0505 (in Korean).
  12. Lee, M. J., Park, K. H., Park, C. W., Sun, J. W. and Lee, D. Y. (2010). "A study on asset valuation method for bridge asset management." Korean Journal of Construction Engineering and Management, Vol. 11, No. 6, pp. 35-44. DOI: https://doi.org/10.6106/KJCEM.2010.11.6.35 (in Korean).
  13. Lee, Y. S. (2012). "The research on economic valuation of maintenance alternatives for bridge." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 32, No. 4D, pp. 387-396. DOI: https://doi.org/10.12652/Ksce.2012.32.4D.387 (in Korean).
  14. Lim, C. S., Kim, D. J., Hwang, K. R., Shin, B. K., Park, K. S., Oh, H. S., Lee, S. O., Kim, D. H., Yu, H. J., Lee, S. Y. and Bang, Y. J. (2021). A study on the improvement of facility safety management system in accordance with climate change, Korea Authority of Land & Infrastructure Safety (KALIS), and Korea Institute for Structural Maintenance and Inspection, Republic of Korea, pp. 112 (in Korean).
  15. Ministry of Land, Infrastructure and Transport (MOLIT), Korea Institute of Civil Engineering and Building Technology (KICT) (2021). 2021 Construction standard production rate, Ministry of Land Infrastructure and Transport, Korea (in Korean).
  16. Park, K. H., Kong, J. S., Hwang, Y. K. and Cho, H. N. (2006). "Development of bridge maintenance method based on life-cycle performance and cost." Korean Journal of Construction Engineering and Management, Vol. 26, No. 6A, pp. 1023-1032 (in Korean).
  17. Park, K. H., Lee, S. Y., Hwang, Y. K., Kong, J. S. and Lim, J. K. (2007a). "Development of the performance-based bridge maintenance system to generate optimum maintenance strategy considering life-cycle cost." Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 11, No. 4, pp. 109-121 (in Korean). https://doi.org/10.11112/JKSMI.2007.11.4.109
  18. Park, K. H., Sun, J. W., Lee, S. Y., Lee, J, S. and Cho, H. N. (2007b). "Practical model to estimate road user cost for bridge maintenance strategy." Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 11, No. 7, pp. 131-144 (in Korean).
  19. Sun, J. W., Lee, D. Y. and Park, K. H. (2016). "Development on repair and reinforcement cost model for bridge life-cycle maintenance cost analysis." Journal of the Korea AcademiaIndustrial Cooperation Society, Vol. 17, No. 11, pp. 128-134. DOI: https://doi.org/10.5762/KAIS.2016.17.11.128 (in Korean).
  20. Sun, J. W., Lee, H. S. and Park, K. H. (2018). "Development of maintenance cost estimation method considering bridge performance changes." Journal of Korea Academia-Industrial cooperation Society, Vol. 19, No. 12, pp. 717-724. DOI: https://doi.org/10.5762/KAIS.2018.19.12.717 (in Korean).
  21. World Economic Forum (WEF) (2019). The global competitiveness report 2019, Switzerland.
  22. Xie, H. B., Wu, W. J. and Wang, Y. F. (2018). "Life-time reliability based optimization of bridge maintenance strategy considering LCA and LCC." Journal of Cleaner Production, Vol. 176, pp. 36-45. DOI: https://doi.org/10.1016/j.jclepro.2017.12.123.