• Title/Summary/Keyword: phytoalexin

Search Result 68, Processing Time 0.026 seconds

Scopoletin Production Related to Induced Resistance of Tobacco Plants Against Tobacco mosaic virus

  • Kim, Young-Ho;Choi, Do-Il;Yeo, Woon-Hyung;Kim, Young-Sook;Chae, Soon-Yong;Park, Eun-Kyung;Kim, Sang-Seock
    • The Plant Pathology Journal
    • /
    • v.16 no.5
    • /
    • pp.264-268
    • /
    • 2000
  • A fluorescent material was accumulated in inoculated leaves showing necrotic local lesions of tobacco plants with N gene, Nicotiana tabacum cvs. Xanthi-nc NN, Samsun NN, Burley 21 and KF 114, and N. glutinosa, and Datura stramonium at the early growth stages by the inoculation of Tobacco mosaic virus (TMV). It was identified as a coumarin phytoalexin, scopoletin. Although the material was most prominently produced in TMV-inoculated tobacco leaves with local necrotic lesions, its accumulation was also noted in uninoculated leaves of TMV-inoculated plants. Its accumulation was somewhat greater in high resistance-induced leaves than low resistance-induced and intact leaves. Scopoletin treatment induced the expression of a pathogenesis-related protein, PR-1, prominently at the concentration of 500 or 1000 ${\mu}$g/ml. This suggests that scopoletin is a phytoalexin abundantly accumulating in N gene-containing resistant plants in response to TMV infection, and may be related to hypersensitive responses (HR) and systemic acquired resistance (SAR) in the resistant tobacco plants.

  • PDF

Pathogen, Insect and Weed Control Effects of Secondary Metabolites from Plants (식물유래 2차 대사물질의 병충해 및 잡초 방제효과)

  • Kim, Jong-Bum
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Pathogens, insects and weeds have significantly reduced agricultural productivity. Thus, to increase the productivity, synthetic agricultural chemicals have been overused. However, these synthetic compounds that are different from natural products cannot be broken down easily in natural systems, causing the destruction of soil quality and agricultural environments and the gradually difficulty in continuous agriculture. Now agriculture is faced with the various problems of minimizing the damage in agricultural environments, securing the safety of human health, while simultaneously increasing agricultural productivity. Meanwhile, plants produce secondary metabolites to protect themselves from external invaders and to secure their region for survival. Plants infected with pathogens produce antibiotics phytoalexin; monocotyledonous plants produce flavonoids and diterpenoids phytoalexins, and dicotylodoneous plant, despite of infected pathogens, produce family-specific phytoalexin such as flavonoids in Leguminosae, indole derivatives in Cruciferae, sesquitepenoids in Solanaceae, coumarins in Umbelliferae, making the plant resistant to specific pathogen. Growth inhibitor or antifeedant substances to insects are terpenoids pyrethrin, azadirachtin, limonin, cedrelanoid, toosendanin and fraxinellone/dictamnine, and terpenoid-alkaloid mixed compounds sesquiterpene pyridine and norditerpenoids, and azepine-, amide-, loline-, stemofoline-, pyrrolizidine-alkaloids and so on. Also plants produces the substances to inhibit other plant growths to secure the regions for plant itself, which is including terpenoids essential oil and sesquiterpene lactone, and additionally, benzoxazinoids, glucosinolate, quassinoid, cyanogenic glycoside, saponin, sorgolennone, juglone and lots of other different of secondary metabolites. Hence, phytoalexin, an antibiotic compound produced by plants infected with pathogens, can be employed for pathogen control. Terpenoids and alkaloids inhibiting insect growth can be utilized for insect control. Allelochemicals, a compound released from a certain plant to hinder the growth of other plants for their survival, can be also used directly as a herbicides for weed control as well. Therefore, the use of the natural secondary metabolites for pest control might be one of the alternatives for environmentally friendly agriculture. However, the natural substances are destroyed easily causing low the pest-control efficacy, and also there is the limitation to producing the substances using plant cell. In the future, effects should be made to try to find the secondary metabolites with good pest-control effect and no harmful to human health. Also the biosynthetic pathways of secondary metabolites have to be elucidated continuously, and the metabolic engineering should be applied to improve transgenics having the resistance to specific pest.

Naringenin Inhibits Dimethylnitrosamine-Induced Hepatic Fibrosis in Rats

  • Lee, Mi-Hye;Shin, Mi-Ok;Yoon, Sik;Moon, Jeon-Ok
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.172.2-173
    • /
    • 2003
  • Naringenin, a phytoalexin found in grapefruit. has been reported to exhibit a wide range of pharmacological properties. The aim of the present study is to evaluate the protective effect of naringenin on hepatic fibrosis induced by dimethylnitrosamine (DMN) in rats. Fibrosis was induced by intraperitoneal injection of DMN. Naringenin was given orally at 20 mg/kg and 50 mg/kg daily for 4 weeks. (omitted)

  • PDF

Inhibitory effects of resveratrol analogs on lipopolysaccharide-induced cyclooxygenase-2 activity in RAW264.7 cells

  • Park, Eun-Jung;Min, Hye-Young;Park, Jae-Eun;Kim, Sang-Hee;Lee, Sang-Kook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.245.1-245.1
    • /
    • 2002
  • It has been known that resveratrol, a phytoalexin present in grapes mainly, has antioxidant. anti-inflammatory, and cancer chemopreventive activity. One mechanism of its anti-inflammation and cancer prevention is considered to modulate cyclooxygense-2 (COX-2) activity. Since COX-2 plays an important role in inflammation and carcinogenesis, the potential COX-2 inhibitors have been considered as anti-inflammatory or cancer chemopreventive agents. (omitted)

  • PDF

Isolation and Biological Activity of $Resveratrol-3-O-{\beta}-D-Glucoside$ in Transgenic Rehmannia glutinosa L. Transformed by Peanut Resveratrol Synthase Gene (RS3)

  • Lim, Jung-Dae;Yang, Deok-Chun;Yun, Song-Joong;Chung, Ill-Min;Sung, Eun-Soo;Kim, Myong-Jo;Heo, Kweon;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.5
    • /
    • pp.406-414
    • /
    • 2004
  • Resveratrol, which is both a phytoalexin with antifungal activity and a phytochemical associated with reduced cancer risk and reduced cardiovascular disease, is synthesized in a limited number of plant species including peanut. Resveratrol synthesis is catalyzed by the enzyme stilbene synthase including resveratrol synthase (RS). Resveratrol synthase gene (RS3) obtained from peanut, Arachis hypogaea, Fabaceae has been transferred into chinese foxglove, Rehmannia glutinosa by using Agrobacterium mediated transformation. RS t-DNA introduced to chinese foxglove (R. glutinosa L) by transformation and its reaction product, $resveratrol-3-O-{\beta}-D-glucoside$ was isolated and characterized using HPLC. Also its biological effects was tested in inhibition of the lipid peroxidation of mouse LDL by glycosylated stilbenes derivatives obtained from transgenic plants. $Resveratrol-3-O-{\beta}-D-glucoside$ isolated from transgenic R. glutinosa L. showed antimicrobial activity of the growth inhibition zone against Escherichia coli and Salmonella typhimurium. Therefore, this compound can be contributed to be useful as a phytoalexin for plant health as well as a phytochemical for human health.

Isolation and Structure Identification of Phytotoxins from Lasiodiplodia theobrorme, the Cause of JAVA Black Rot of Sweet Potato (고구마 검은썩음병균(Lasiodiplodia theobromae)으로부터 식물독소의 분리 및 구조)

  • Lim, Chi-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.1
    • /
    • pp.118-123
    • /
    • 1998
  • Lasiodiplodia theobrorme is a pathogen of Java black rot on sweet potato. This fungus infects the tuberous root during storage after harvest. Invasion of the fungus results in the expansion of necrosis sites into the tuberous roots. The resultant necrotic symptom of the tissue is also induced by application of acetone extract of the fungus growing on potato sucrose agar (PSA) culture. The active principles to induce the necrosis are purified from the acetone extract as follows. After evaporation of hexane-benzene-EtOAc (1:2:1, v/v/v) the extract was fractioned on silica gel column, using a solvent gradient system from n-hexane to EtOAc and then to MeOH. The active fractions were purified with HPLC on Nucleosil 50-5 column by eluting n-hexane to EtOAc. Their structures are established by using spectroscopic techniques and synthesis to 4-hydroxymellein and mellein, respectively. Application of small amount of these compounds induce expansion of the necrotic symptom into the tissue and accumulated ipomeamarone. Conclusively, these compounds acted as phytotoxins (inducing necrosis) and as elicitors (eliciting the phytoalexin).

  • PDF

Elicitation of Seedlings and Cultured Cells for the Production of Capsidiol in Capsicum annum L. (고추 (Capsicum annum L.)식물체 및 배양세포의 Capsidiol 생산 유도)

  • 권순태;정은아;박해영;손건호
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.5
    • /
    • pp.249-254
    • /
    • 2001
  • Effects of ultraviolet stress and elicitors, cellulase and jasmonic acid (JA), for the production of capsidiol, sesquiterpenoid phytoalexin, in seedlings and suspension cultures of pepper (Capsicum annum L. cv, Soobicho) were examined. Extracellular capsidiol in the medium of suspension cultures was absent from control cells, but accumulated in the elicitor treated cells with 0.05 $\mu\textrm{g}$/mL of cellulase or 0.1 $\mu\textrm{g}$/mL JA. Elicited cells gradually decreased their viability and eventually died within 48 hours of elicitor treatment by the toxicity of capsidiol accumulated in the culture medium. Capsidiol production in the leaves of pepper seedlings was markedly increased by the treatment of ultraviolet stress and reached maximum level at 48 hours of irradiation. Infiltration of elicitors, 0.05 $\mu\textrm{g}$/mL cellulase or 1.0 $\mu\textrm{g}$/mL JA, to the surface of leaf or fruit, stimulated the elicitation of the cells which resulted in the production of capsidiol and expansion of pathogene-like lesion around the elicitor treated region.

  • PDF

Molecular Cloning and Characterization of Sesquiterpene Cyclase cDNAs from Pepper Plant Infected with Phytophthora capsici

  • Kim, Jong-Bum;Lee, Sung-Gon;Ha, Sun-Hwa;Lee, Myung-Chul;Ye, Wan-Hye;Lee, Jang-Yong;Lee, Shin-Woo;Kim, Jung-Bong;Cho, Kang-Jin;Hwang, Young-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.59-64
    • /
    • 2001
  • Pepper plants (Nogkwang, 60-day old) were inoculated with Phytophthora capsici to induce sesquiterpene cyclase associated with the biosynthesis of phytoalexin (capsidiol), a substance related to the defense against pathogens in plants. One day after inoculation, mRNA was isolated from the root, cDNA synthesized, and a library constructed in a ZAP express XR vector. The efficiency was $2{\times}10^6pfu/{\mu}g$. Sesquiterpene cyclase cDNA from Hyoscyamus muticus was labeled with $^{32}P$ and used as a probe for screening the cDNA library. After the third screening, 25 positive clones were selected. Through restrictive digestion and DNA gel-blot analysis, six different cyclase gene expressions were identified. PSC1B sequences of the six clones were determined, which were 1966 base pairs encoded 556 amino acids with an expected molecular weight of 63.8 kDa. Response against the pathogen was different between the resistant and susceptible peppers. After the infection of the pathogen, the expression of PSC genes continued in the resistant peppers while the plants were alive. The expression in the susceptible peppers lasted for only 4 days.

  • PDF