• Title/Summary/Keyword: physiological roles

Search Result 373, Processing Time 0.021 seconds

The role of diuretic hormones (DHs) and their receptors in Drosophila

  • Gahbien Lee;Heejin Jang;Yangkyun Oh
    • BMB Reports
    • /
    • v.56 no.4
    • /
    • pp.209-215
    • /
    • 2023
  • Maintaining internal homeostasis and regulating innate behaviors are essential for animal survival. In various animal species, a highly conserved neuroendocrine system integrates sensory inputs and regulates physiological responses to environmental and internal changes. Diuretic hormones 44 and 31, which are homologs of mammalian corticotropin-releasing factor (CRF) and calcitonin gene-related peptide (CGRP), respectively, control body fluid secretion in Drosophila. These neuropeptides and their receptors have multiple physiological roles, including the regulation of body-fluid secretion, sleep:wake cycle, internal nutrient-sensing, and CO2-dependent response. This review discusses the physiological and behavioral roles of DH44 and DH31 signaling pathways, consisting of neuroendocrine cells that secrete DH44 or DH31 peptides and their receptor-expressing organs. Further research is needed to understand the regulatory mechanisms of the behavioral processes mediated by these neuroendocrine systems.

Neuroglial Cells : An Overview of Their Physiological Roles and Abnormalities in Mental Disorders (신경아교세포의 정상 기능과 정신장애에서 나타나는 신경아교세포 이상에 대한 고찰)

  • Lee, Kyungmin
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.2
    • /
    • pp.29-33
    • /
    • 2015
  • The brain maintains homeostasis and normal microenvironment through dynamic interactions of neurons and neuroglial cells to perform the proper information processing and normal cognitive functions. Recent post-mortem investigations and animal model studies demonstrated that the various brain areas such as cerebral cortex, hippocampus and amygdala have abnormalities in neuroglial numbers and functions in subjects with mental illnesses including schizophrenia, dementia and mood disorders like major depression and bipolar disorder. These findings highlight the putative role and involvement of neuroglial cells in mental disorders. Herein I discuss the physiological roles of neuroglial cells such as astrocytes, oligodendrocytes, and microglia in maintaining normal brain functions and their abnormalities in relation to mental disorders. Finally, all these findings could serve as a useful starting point for potential therapeutic concept and drug development to cure unnatural behaviors and abnormal cognitive functions observed in mental disorders.

Lipophagy: Molecular Mechanisms and Implications in Metabolic Disorders

  • Shin, Dong Wook
    • Molecules and Cells
    • /
    • v.43 no.8
    • /
    • pp.686-693
    • /
    • 2020
  • Autophagy is an intracellular degradation system that breaks down damaged organelles or damaged proteins using intracellular lysosomes. Recent studies have also revealed that various forms of selective autophagy play specific physiological roles under different cellular conditions. Lipid droplets, which are mainly found in adipocytes and hepatocytes, are dynamic organelles that store triglycerides and are critical to health. Lipophagy is a type of selective autophagy that targets lipid droplets and is an essential mechanism for maintaining homeostasis of lipid droplets. However, while processes that regulate lipid droplets such as lipolysis and lipogenesis are relatively well known, the major factors that control lipophagy remain largely unknown. This review introduces the underlying mechanism by which lipophagy is induced and regulated, and the current findings on the major roles of lipophagy in physiological and pathological status. These studies will provide basic insights into the function of lipophagy and may be useful for the development of new therapies for lipophagy dysfunction-related diseases.

Overexpressed Mitochondrial Thioredoxin Protects PC12 Cells from Hydrogen Peroxide and Serum-deprivation

  • Lee, Yun-Song;Yu, Seung-A
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.33-37
    • /
    • 2003
  • Oxidative damage to mitochondria is a critical mechanism in necrotic or apoptotic cell death induced by many kinds of toxic chemicals. Thioredoxin (Trx) family proteins are known to play protective roles in organisms under oxidative stress through redox reaction by using reducing equivalents of cysteines at a conserved active site, Cys-X-X-Cys. Whereas biological and physiological properties of Trx1 are well characterized, significance of mitochondrial thioredoxin (Trx2) is not well known. Therefore, we addressed physiological role of Trx2 in PC12 cells under oxidative stress. In PC12 cells, transiently overexpressed Trx2 significantly reduced cell death induced by hydrogen peroxide, whereas mutant Trx2, having serine residues instead of two cysteine residues at the active site did not. In addition, stably expressed Trx2 protected PC12 cells from serum deprivation. These results suggest that Trx2 may play defensive roles in PC12 cells by reducing oxidative stress to mitochondria.

Alternative Polyadenylation of mRNAs: 3'-Untranslated Region Matters in Gene Expression

  • Yeh, Hsin-Sung;Yong, Jeongsik
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.281-285
    • /
    • 2016
  • Almost all of eukaryotic mRNAs are subjected to polyadenylation during mRNA processing. Recent discoveries showed that many of these mRNAs contain more than one polyadenylation sites in their 3' untranslated regions (UTR) and that alternative polyadenylation (APA) is prevalent among these genes. Many biological processes such as differentiation, proliferation, and tumorigenesis have been correlated to global APA events in the 3' UTR of mRNAs, suggesting that these APA events are tightly regulated and may play important physiological roles. In this review, recent discoveries in the physiological roles of APA events, as well as the known and proposed mechanisms are summarized. Perspective for future directions is also discussed.

The potential theragnostic (diagnostic+therapeutic) application of exosomes in diverse biomedical fields

  • Kim, Yong-Seok;Ahn, Jae-Sung;Kim, Semi;Kim, Hyun-Jin;Kim, Shin-Hee;Kang, Ju-Seop
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.113-125
    • /
    • 2018
  • Exosomes are membranous vesicles of 30-150 nm in diameter that are derived from the exocytosis of the intraluminal vesicles of many cell types including immune cells, stem cells, cardiovascular cells and tumor cells. Exosomes participate in intercellular communication by delivering their contents to recipient cells, with or without direct contact between cells, and thereby influence physiological and pathological processes. They are present in various body fluids and contain proteins, nucleic acids, lipids, and microRNAs that can be transported to surrounding cells. Theragnosis is a concept in next-generation medicine that simultaneously combines accurate diagnostics with therapeutic effects. Molecular components in exosomes have been found to be related to certain diseases and treatment responses, indicating that they may have applications in diagnosis via molecular imaging and biomarker detection. In addition, recent studies have reported that exosomes have immunotherapeutic applications or can act as a drug delivery system for targeted therapies with drugs and biomolecules. In this review, we describe the formation, structure, and physiological roles of exosomes. We also discuss their roles in the pathogenesis and progression of diseases including neurodegenerative diseases, cardiovascular diseases, and cancer. The potential applications of exosomes for theragnostic purposes in various diseases are also discussed. This review summarizes the current knowledge about the physiological and pathological roles of exosomes as well as their diagnostic and therapeutic uses, including emerging exosome-based therapies that could not be applied until now.