DOI QR코드

DOI QR Code

Alternative Polyadenylation of mRNAs: 3'-Untranslated Region Matters in Gene Expression

  • Yeh, Hsin-Sung (Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota) ;
  • Yong, Jeongsik (Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota)
  • Received : 2016.02.05
  • Accepted : 2016.02.11
  • Published : 2016.04.30

Abstract

Almost all of eukaryotic mRNAs are subjected to polyadenylation during mRNA processing. Recent discoveries showed that many of these mRNAs contain more than one polyadenylation sites in their 3' untranslated regions (UTR) and that alternative polyadenylation (APA) is prevalent among these genes. Many biological processes such as differentiation, proliferation, and tumorigenesis have been correlated to global APA events in the 3' UTR of mRNAs, suggesting that these APA events are tightly regulated and may play important physiological roles. In this review, recent discoveries in the physiological roles of APA events, as well as the known and proposed mechanisms are summarized. Perspective for future directions is also discussed.

Keywords

References

  1. Barabino, S.M.L., and Keller, W. (1999). Last but not least: fegulated Poly(A) tail formation. Cell 99, 9-11. https://doi.org/10.1016/S0092-8674(00)80057-4
  2. Bava, F., Eliscovich, C., Ferreira, P.G., Minana, B., Ben-Dov, C., Guigo, R., Valcarcel, J., and Mendez, R. (2013). CPEB1 coordinates alternative 3prime]-UTR formation with translational regulation. Nature 495, 121-125. https://doi.org/10.1038/nature11901
  3. Beaudoing, E., Freier, S., Wyatt, J.R., Claverie, J., and Gautheret, D. (2000). Patterns of variant polyadenylation signal usage in human genes. Genome Res. 10, 1001-1010. https://doi.org/10.1101/gr.10.7.1001
  4. Beisang, D., Reilly, C., and Bohjanen, P.R. (2014). Alternative polyadenylation regulates CELF1/CUGBP1 target transcripts following T cell activation. Gene 550, 93-100. https://doi.org/10.1016/j.gene.2014.08.021
  5. Boutet, S., Cheung, T., Quach, N., Liu, L., Prescott, S.L., Edalati, A., Iori, K., and Rando, T. (2012). Alternative polyadenylation mediates microRNA regulation of muscle stem cell function. Cell Stem Cell 10, 327-336. https://doi.org/10.1016/j.stem.2012.01.017
  6. Chang, J., Zhang, W., Yeh, H., de Jong, E.P., Jun, S., Kim, K., Bae, S.S., Beckman, K., Hwang, T.H., Kim, K., et al. (2015). mRNA 3prime]-UTR shortening is a molecular signature of mTORC1 activation. Nat. Commun. 6, 7218.
  7. Chuvpilo, S., Zimmer, M., Kerstan, A., Glockner, J., Avots, A., Escher, C., Fischer, C., Inashkina, I., Jankevics, E., Berberich- Siebelt, F., et al. (1999). Alternative polyadenylation events contribute to the induction of NF-ATc in effector T cells. Immunity 10, 261-269. https://doi.org/10.1016/S1074-7613(00)80026-6
  8. Colgan, D.F., and Manley, J.L. (1997). Mechanism and regulation of mRNA polyadenylation. Genes Dev. 11, 2755-2766. https://doi.org/10.1101/gad.11.21.2755
  9. Danckwardt, S., Hentze, M.W., and Kulozik, A.E. (2007a). 3ae end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J. 27, 482-498.
  10. Danckwardt, S., Kaufmann, I., Gentzel, M., Foerstner, K.U., Gantzert, A., Gehring, N.H., Neu‐Yilik, G., Bork, P., Keller, W., Wilm, M., et al. (2007b). Splicing factors stimulate polyadenylation via USEs at non‐canonical 3′ end formation signals. EMBO J. 26, 2658-2669. https://doi.org/10.1038/sj.emboj.7601699
  11. de Klerk, E., Venema, A., Anvar, S.Y., Goeman, J.J., Hu, O., Trollet, C., Dickson, G., den Dunnen, J.T., van der Maarel, S.M., Raz, V., et al. (2012). Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation. Nucleic Acids Res. 40, 9089-9101. https://doi.org/10.1093/nar/gks655
  12. Di Giammartino, D.C., Nishida, K., and Manley, J.L. (2011). Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43, 853-866. https://doi.org/10.1016/j.molcel.2011.08.017
  13. Elkon, R., Drost, J., van Haaften, G., Jenal, M., Schrier, M., Oude Vrielink, J., and Agami, R. (2012). E2F mediates enhanced alternative polyadenylation in proliferation. Genome Biol. 13, R59. https://doi.org/10.1186/gb-2012-13-7-r59
  14. Elkon, R., Ugalde, A.P., and Agami, R. (2013). Alternative cleavage and polyadenylation: extent, regulation and function. Nat. Rev. Genet. 14, 496-506. https://doi.org/10.1038/nrg3482
  15. Fabian, M.R., Sonenberg, N., and Filipowicz, W. (2010). Regulation of mRNA Translation and Stability by microRNAs. Annu. Rev. Biochem. 79, 351-379. https://doi.org/10.1146/annurev-biochem-060308-103103
  16. Graber, J.H., Cantor, C.R., Mohr, S.C., and Smith, T.F. (1999). Genomic detection of new yeast pre-mRNA 3'-end-processing signals. Nucleic Acids Res. 27, 888-894. https://doi.org/10.1093/nar/27.3.888
  17. Han, T., Kato, M., Xie, S., Wu, L., Mirzaei, H., Pei, J., Chen, M., Xie, Y., Allen, J., Xiao, G., et al. (2012). Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768-779. https://doi.org/10.1016/j.cell.2012.04.016
  18. Hoque, M., Ji, Z., Zheng, D., Luo, W., Li, W., You, B., Park, J.Y., Yehia, G., and Tian, B. (2013). Analysis of alternative cleavage and polyadenylation by 3prime] region extraction and deep sequencing. Nat. Meth. 10, 133-139. https://doi.org/10.1038/nchembio.1406
  19. Jenal, M., Elkon, R., Loayza-Puch, F., van Haaften, G., Kühn, U., Menzies, F., Vrielink, J.F., Bos, A., Drost, J., Rooijers, K., et al. (2012). The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell 149, 538-553. https://doi.org/10.1016/j.cell.2012.03.022
  20. Ji, Z., and Tian, B. (2009). Reprogramming of 3' untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS One 4, e8419. https://doi.org/10.1371/journal.pone.0008419
  21. Ji, Z., Lee, J.Y., Pan, Z., Jiang, B., and Tian, B. (2009). Progressive lengthening of 3' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc. Natl. Acad. Sci. 106, 7028-7033. https://doi.org/10.1073/pnas.0900028106
  22. Kuhn, U., Gundel, M., Knoth, A., Kerwitz, Y., Rüdel, S., and Wahle, E. (2009). Poly(A) tail length is controlled by the nuclear poly(A)- binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor. J. Biol. Chem. 284, 22803-22814. https://doi.org/10.1074/jbc.M109.018226
  23. Laplante, M., and Sabatini, D. (2012). mTOR signaling in growth control and disease. Cell 149, 274-293. https://doi.org/10.1016/j.cell.2012.03.017
  24. Lembo, A., Di Cunto, F., and Provero, P. (2012). Shortening of 3 UTRs correlates with poor prognosis in breast and lung cancer. PLoS One 7, e31129. https://doi.org/10.1371/journal.pone.0031129
  25. Li, W., You, B., Hoque, M., Zheng, D., Luo, W., Ji, Z., Park, J.Y., Gunderson, S.I., Kalsotra, A., Manley, J.L., et al. (2015). Systematic profiling of poly(A)+ transcripts modulated by core 3' end processing and splicing factors reveals regulatory rules of alternative cleavage and polyadenylation. PLoS Genet. 11, e1005166. https://doi.org/10.1371/journal.pgen.1005166
  26. Licatalosi, D.D., Mele, A., Fak, J.J., Ule, J., Kayikci, M., Chi, S.W., Clark, T.A., Schweitzer, A.C., Blume, J.E., Wang, X., et al. (2008). HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464-469. https://doi.org/10.1038/nature07488
  27. Martin, G., Gruber, A., Keller, W., and Zavolan, M. (2012). Genomewide analysis of pre-mRNA 3' end processing reveals a decisive role of human cleavage factor I in the regulation of 3' UTR length. Cell Rep. 1, 753-763. https://doi.org/10.1016/j.celrep.2012.05.003
  28. Masamha, C.P., Xia, Z., Yang, J., Albrecht, T.R., Li, M., Shyu, A., Li, W., and Wagner, E.J. (2014). CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature 510, 412-416. https://doi.org/10.1038/nature13261
  29. Mayr, C., and Bartel, D.P. (2009). Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673-684. https://doi.org/10.1016/j.cell.2009.06.016
  30. Millevoi, S., Loulergue, C., Dettwiler, S., Karaa, S.Z., Keller, W., Antoniou, M., and Vagner, S. (2006). An interaction between U2AF 65 and CF Im links the splicing and 3ae end processing machineries. EMBO J. 25, 4854-4864. https://doi.org/10.1038/sj.emboj.7601331
  31. Morris, A.R., Bos, A., Diosdado, B., Rooijers, K., Elkon, R., Bolijn, A.S., Carvalho, B., Meijer, G.A., and Agami, R. (2012). Alternative cleavage and polyadenylation during colorectal cancer development. Clin. Cancer Res. 18, 5256-5266. https://doi.org/10.1158/1078-0432.CCR-12-0543
  32. Proudfoot, N.J. (2011). Ending the message: poly(A) signals then and now. Genes Dev. 25, 1770-1782. https://doi.org/10.1101/gad.17268411
  33. Sandberg, R., Neilson, J., Sarma, A., Sharp, P., and Burge, C. (2008a). Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites. Science (New York, N.Y.) 320, 1643-1647. https://doi.org/10.1126/science.1155390
  34. Sandberg, R., Neilson, J.R., Sarma, A., Sharp, P.A., and Burge, C.B. (2008b). Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites. Science 320, 1643-1647. https://doi.org/10.1126/science.1155390
  35. Singh, P., Alley, T.L., Wright, S.M., Kamdar, S., Schott, W., Wilpan, R.Y., Mills, K.D., and Graber, J.H. (2009). Global changes in processing of mRNA 3' untranslated regions characterize clinically distinct cancer subtypes. Cancer Res. 69, 9422-9430. https://doi.org/10.1158/0008-5472.CAN-09-2236
  36. Takagaki, Y., Seipelt, R.L., Peterson, M.L., and Manley, J.L. (1996). The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 87, 941-952. https://doi.org/10.1016/S0092-8674(00)82000-0
  37. Tian, B., and Manley, J.L. (2013). Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem. Sci. 38, 312-320. https://doi.org/10.1016/j.tibs.2013.03.005
  38. Wang, E., Cody, N.L., Jog, S., Biancolella, M., Wang, T., Treacy, D., Luo, S., Schroth, G., Housman, D., Reddy, S., et al. (2012). Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 150, 710-724. https://doi.org/10.1016/j.cell.2012.06.041
  39. Yang, Q., Gilmartin, G.M., and Doublie, S. (2010). Structural basis of UGUA recognition by the Nudix protein CFIm25 and implications for a regulatory role in mRNA 3' processing. Proc. Natl. Acad. Sci. USA 107, 10062-10067. https://doi.org/10.1073/pnas.1000848107
  40. Yao, C., Biesinger, J., Wan, J., Weng, L., Xing, Y., Xie, X., and Shi, Y. (2012). Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation. Proc. Natl. Acad. Sci. USA 109, 18773-18778. https://doi.org/10.1073/pnas.1211101109
  41. Zhang, H., Lee, J., and Tian, B. (2005). Biased alternative polyadenylation in human tissues. Genome Biol. 6, R100. https://doi.org/10.1186/gb-2005-6-12-r100
  42. Zhang, X., Virtanen, A., and Kleiman, F.E. (2010). To polyadenylate or to deadenylate: That is the question. Cell Cycle 9, 4437-4449. https://doi.org/10.4161/cc.9.22.13887
  43. Zhu, H., Zhou, H., Hasman, R.A., and Lou, H. (2007). Hu proteins regulate polyadenylation by blocking sites containing U-rich sequences. J. Biol. Chem. 282, 2203-2210. https://doi.org/10.1074/jbc.M609349200

Cited by

  1. Combining Results from Distinct MicroRNA Target Prediction Tools Enhances the Performance of Analyses vol.8, 2017, https://doi.org/10.3389/fgene.2017.00059
  2. Genetic analysis of α-synuclein 3′ untranslated region and its corresponding microRNAs in relation to Parkinson's compared to dementia with Lewy bodies 2017, https://doi.org/10.1016/j.jalz.2017.03.001
  3. In vitro labeling strategies for in cellulo fluorescence microscopy of single ribonucleoprotein machines vol.26, pp.7, 2017, https://doi.org/10.1002/pro.3108
  4. Integration of mRNP formation and export vol.74, pp.16, 2017, https://doi.org/10.1007/s00018-017-2503-3
  5. The state of play in higher eukaryote gene annotation vol.17, pp.12, 2016, https://doi.org/10.1038/nrg.2016.119
  6. Untranslated Parts of Genes Interpreted: Making Heads or Tails of High-Throughput Transcriptomic Data via Computational Methods vol.39, pp.12, 2017, https://doi.org/10.1002/bies.201700090
  7. vol.32, pp.12, 2018, https://doi.org/10.1096/fj.201800093
  8. Analyses of alternative polyadenylation: from old school biochemistry to high-throughput technologies vol.50, pp.4, 2016, https://doi.org/10.5483/bmbrep.2017.50.4.019
  9. An integrative model for alternative polyadenylation, IntMAP, delineates mTOR-modulated endoplasmic reticulum stress response vol.46, pp.12, 2016, https://doi.org/10.1093/nar/gky340
  10. The Landscape of SNCA Transcripts Across Synucleinopathies: New Insights From Long Reads Sequencing Analysis vol.10, pp.None, 2019, https://doi.org/10.3389/fgene.2019.00584
  11. Cleavage factor 25 deregulation contributes to pulmonary fibrosis through alternative polyadenylation vol.129, pp.5, 2016, https://doi.org/10.1172/jci122106
  12. Transforming growth factor β1 alters the 3′-UTR of mRNA to promote lung fibrosis vol.294, pp.43, 2019, https://doi.org/10.1074/jbc.ra119.009148
  13. Template-switching artifacts resemble alternative polyadenylation vol.20, pp.1, 2016, https://doi.org/10.1186/s12864-019-6199-7
  14. Genome-wide profiling reveals alternative polyadenylation of mRNA in human non-small cell lung cancer vol.17, pp.1, 2016, https://doi.org/10.1186/s12967-019-1986-0
  15. Dissecting the heterogeneity of the alternative polyadenylation profiles in triple-negative breast cancers vol.10, pp.23, 2016, https://doi.org/10.7150/thno.40944
  16. mTOR-coordinated Post-Transcriptional Gene Regulations: from Fundamental to Pathogenic Insights vol.9, pp.1, 2020, https://doi.org/10.12997/jla.2020.9.1.8
  17. Characterization and Functional Analysis of Polyadenylation Sites in Fast and Slow Muscles vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/2626584
  18. Alternative Polyadenylation: a new frontier in post transcriptional regulation vol.8, pp.1, 2016, https://doi.org/10.1186/s40364-020-00249-6
  19. Impact of PD-1 gene polymorphism and its interaction with tea drinking on susceptibility to tuberculosis vol.149, pp.None, 2016, https://doi.org/10.1017/s0950268821000042
  20. Shortening of HO1 3′UTRs by Alternative Polyadenylation Suppresses Adipogenesis in 3T3-L1 vol.69, pp.28, 2021, https://doi.org/10.1021/acs.jafc.1c01822
  21. Construction of a lncRNA-miRNA-mRNA network to determine the key regulators of the Th1/Th2 imbalance in multiple sclerosis vol.13, pp.22, 2016, https://doi.org/10.2217/epi-2021-0296
  22. Aptardi predicts polyadenylation sites in sample-specific transcriptomes using high-throughput RNA sequencing and DNA sequence vol.12, pp.1, 2016, https://doi.org/10.1038/s41467-021-21894-x