DOI QR코드

DOI QR Code

Structural and Mechanistic Insights into the Tropism of Epstein-Barr Virus

  • Mohl, Britta S. (Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University) ;
  • Chen, Jia (Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University) ;
  • Sathiyamoorthy, Karthik (Department of Structural Biology, Stanford University School of Medicine) ;
  • Jardetzky, Theodore S. (Department of Structural Biology, Stanford University School of Medicine) ;
  • Longnecker, Richard (Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University)
  • Received : 2016.03.23
  • Accepted : 2016.03.26
  • Published : 2016.04.30

Abstract

Epstein-Barr virus (EBV) is the prototypical ${\gamma}$-herpesvirus and an obligate human pathogen that infects mainly epithelial cells and B cells, which can result in malignancies. EBV infects these target cells by fusing with the viral and cellular lipid bilayer membranes using multiple viral factors and host receptor(s) thus exhibiting a unique complexity in its entry machinery. To enter epithelial cells, EBV requires minimally the conserved core fusion machinery comprised of the glycoproteins gH/gL acting as the receptor-binding complex and gB as the fusogen. EBV can enter B cells using gp42, which binds tightly to gH/gL and interacts with host HLA class II, activating fusion. Previously, we published the individual crystal structures of EBV entry factors, such as gH/gL and gp42, the EBV/host receptor complex, gp42/HLA-DR1, and the fusion protein EBV gB in a postfusion conformation, which allowed us to identify structural determinants and regions critical for receptor-binding and membrane fusion. Recently, we reported different low resolution models of the EBV B cell entry triggering complex (gHgL/gp42/HLA class II) in "open" and "closed" states based on negative-stain single particle electron microscopy, which provide further mechanistic insights. This review summarizes the current knowledge of these key players in EBV entry and how their structures impact receptor-binding and the triggering of gB-mediated fusion.

Keywords

References

  1. Adler, B. (2015). A viral pilot for HCMV navigation? Viruses 7, 3857- 3862. https://doi.org/10.3390/v7072801
  2. Atanasiu, D., Whitbeck, J.C., de Leon, M.P., Lou, H., Hannah, B.P., Cohen, G.H., and Eisenberg, R.J. (2010). Bimolecular complementation defines functional regions of Herpes simplex virus gB that are involved with gH/gL as a necessary step leading to cell fusion. J. Virol. 84, 3825-3834. https://doi.org/10.1128/JVI.02687-09
  3. Backovic, M., Jardetzky, T.S., and Longnecker, R. (2007a). Hydrophobic residues that form putative fusion loops of Epstein- Barr virus glycoprotein B are critical for fusion activity. J. Virol. 81, 9596-9600. https://doi.org/10.1128/JVI.00758-07
  4. Backovic, M., Leser, G.P., Lamb, R.A., Longnecker, R., and Jardetzky, T.S. (2007b). Characterization of EBV gB indicates properties of both class I and class II viral fusion proteins. Virology 368, 102-113. https://doi.org/10.1016/j.virol.2007.06.031
  5. Backovic, M., Longnecker, R., and Jardetzky, T.S. (2009). Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B. Proc. Natl. Acad. Sci. USA 106, 2880-2885. https://doi.org/10.1073/pnas.0810530106
  6. Backovic, M., DuBois, R.M., Cockburn, J.J., Sharff, A.J., Vaney, M.C., Granzow, H., Klupp, B.G., Bricogne, G., Mettenleiter, T.C., and Rey, F.A. (2010). Structure of a core fragment of glycoprotein H from pseudorabies virus in complex with antibody. Proc. Natl. Acad. Sci. USA 107, 22635-22640. https://doi.org/10.1073/pnas.1011507107
  7. Böhm, S.W., Eckroth, E., Backovic, M., Klupp, B.G., Rey, F.A., Mettenleiter, T.C., and Fuchs, W. (2015). Structure-based functional analyses of domains II and III of pseudorabies virus glycoprotein H. J. Virol. 89, 1364-1376. https://doi.org/10.1128/JVI.02765-14
  8. Borza, C.M., and Hutt-Fletcher, L.M. (2002). Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat. Med. 8, 594-599. https://doi.org/10.1038/nm0602-594
  9. Burke, H.G., and Heldwein, E.E. (2015). Crystal structure of the human cytomegalovirus Glycoprotein B. PLoS Pathog. 11, e1005227. https://doi.org/10.1371/journal.ppat.1005227
  10. Cairns, T.M., Landsburg, D.J., Whitbeck, J.C., Eisenberg, R.J., and Cohen, G.H. (2005). Contribution of cysteine residues to the structure and function of herpes simplex virus gH/gL. Virology 332, 550-562. https://doi.org/10.1016/j.virol.2004.12.006
  11. Chandramouli, S., Ciferri, C., Nikitin, P.A., Calo, S., Gerrein, R., Balabanis, K., Monroe, J., Hebner, C., Lilja, A.E., Settembre, E.C., et al. (2015). Structure of HCMV glycoprotein B in the postfusion conformation bound to a neutralizing human antibody. Nat. Commun. 6, 8176. https://doi.org/10.1038/ncomms9176
  12. Chen, J., Rowe, C.L., Jardetzky, T.S., and Longnecker, R. (2012). The KGD motif of Epstein-Barr virus gH/gL is bifunctional, orchestrating infection of B cells and epithelial cells. MBio 3, pii: e00290-11.
  13. Chen, J., Jardetzky, T.S., and Longnecker, R. (2013). The large groove found in the gH/gL structure is an important functional domain for Epstein-Barr virus fusion. J. Virol. 87, 3620-3627. https://doi.org/10.1128/JVI.03245-12
  14. Chen, J., Zhang, X., Jardetzky, T.S., and Longnecker, R. (2014). The Epstein-Barr virus (EBV) glycoprotein B cytoplasmic Cterminal tail domain regulates the energy requirement for EBVinduced membrane fusion. J. Virol. 88, 11686-11695. https://doi.org/10.1128/JVI.01349-14
  15. Chesnokova, L.S., and Hutt-Fletcher, L.M. (2011). Fusion of Epstein-Barr virus with epithelial cells can be triggered by alphavbeta5 in addition to alphavbeta6 and alphavbeta8, and integrin binding triggers a conformational change in glycoproteins gHgL. J. Virol. 85, 13214-13223. https://doi.org/10.1128/JVI.05580-11
  16. Chowdary, T.K., Cairns, T.M., Atanasiu, D., Cohen, G.H., Eisenberg, R.J., and Heldwein, E.E. (2010). Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL. Nat. Struct. Mol. Biol. 17, 882-888. https://doi.org/10.1038/nsmb.1837
  17. Connolly, S.A., Jackson, J.O., Jardetzky, T.S., and Longnecker, R. (2011). Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat Rev Microbiol 9, 369-381. https://doi.org/10.1038/nrmicro2548
  18. Dong, X., Hudson, N.E., Lu, C., and Springer, T.A. (2014). Structural determinants of integrin beta-subunit specificity for latent TGF-beta. Nat. Struct. Mol. Biol. 21, 1091-1096. https://doi.org/10.1038/nsmb.2905
  19. Drozdetskiy, A., Cole, C., Procter, J., and Barton, G.J. (2015). JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 43, W389-394. https://doi.org/10.1093/nar/gkv332
  20. Galdiero, M., Whiteley, A., Bruun, B., Bell, S., Minson, T., and Browne, H. (1997). Site-directed and linker insertion mutagenesis of herpes simplex virus type 1 glycoprotein H. J. Virol. 71, 2163-2170.
  21. Garcia, N.J., Chen, J., and Longnecker, R. (2013). Modulation of Epstein-Barr virus glycoprotein B (gB) fusion activity by the gB cytoplasmic tail domain. MBio 4, e00571-00512.
  22. Gompels, U.A., Carss, A.L., Saxby, C., Hancock, D.C., Forrester, A., and Minson, A.C. (1991). Characterization and sequence analyses of antibody-selected antigenic variants of herpes simplex virus show a conformationally complex epitope on glycoprotein H. J. Virol. 65, 2393-2401.
  23. Gong, M., and Kieff, E. (1990). Intracellular trafficking of two major Epstein-Barr virus glycoproteins, gp350/220 and gp110. J. Virol. 64, 1507-1516.
  24. Haan, K.M., Lee, S.K., and Longnecker, R. (2001). Different functional domains in the cytoplasmic tail of glycoprotein B are involved in Epstein-Barr virus-induced membrane fusion. Virology 290, 106-114. https://doi.org/10.1006/viro.2001.1141
  25. Harman, A., Browne, H., and Minson, T. (2002). The transmembrane domain and cytoplasmic tail of herpes simplex virus type 1 glycoprotein H play a role in membrane fusion. J. Virol. 76, 10708-10716. https://doi.org/10.1128/JVI.76.21.10708-10716.2002
  26. Heldwein, E.E., Lou, H., Bender, F.C., Cohen, G.H., Eisenberg, R.J., and Harrison, S.C. (2006). Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313, 217-220. https://doi.org/10.1126/science.1126548
  27. Hutt-Fletcher, L.M., and Chesnokova, L.S. (2010). Integrins as triggers of Epstein-Barr virus fusion and epithelial cell infection. Virulence 1, 395-398. https://doi.org/10.4161/viru.1.5.12546
  28. Janz, A., Oezel, M., Kurzeder, C., Mautner, J., Pich, D., Kost, M., Hammerschmidt, W., and Delecluse, H.J. (2000). Infectious Epstein-Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J. Virol. 74, 10142-10152. https://doi.org/10.1128/JVI.74.21.10142-10152.2000
  29. Jasirwan, C., Furusawa, Y., Tang, H., Maeki, T., and Mori, Y. (2014). Human herpesvirus-6A gQ1 and gQ2 are critical for human CD46 usage. Microbiol. Immunol. 58, 22-30. https://doi.org/10.1111/1348-0421.12110
  30. Kirschner, A.N., Lowrey, A.S., Longnecker, R., and Jardetzky, T.S. (2007). Binding-site interactions between Epstein-Barr virus fusion proteins gp42 and gH/gL reveal a peptide that inhibits both epithelial and B-cell membrane fusion. J. Virol. 81, 9216-9229. https://doi.org/10.1128/JVI.00575-07
  31. Kirschner, A.N., Sorem, J., Longnecker, R., and Jardetzky, T.S. (2009). Structure of Epstein-Barr virus glycoprotein 42 suggests a mechanism for triggering receptor-activated virus entry. Structure 17, 223-233. https://doi.org/10.1016/j.str.2008.12.010
  32. Langeland, N., Oyan, A.M., Marsden, H.S., Cross, A., Glorioso, J.C., Moore, L.J., and Haarr, L. (1990). Localization on the herpes simplex virus type 1 genome of a region encoding proteins involved in adsorption to the cellular receptor. J. Virol. 64, 1271-1277.
  33. Lee, S.K., and Longnecker, R. (1997). The Epstein-Barr virus glycoprotein 110 carboxy-terminal tail domain is essential for lytic virus replication. J. Virol. 71, 4092-4097.
  34. Liu, F., Marquardt, G., Kirschner, A.N., Longnecker, R., and Jardetzky, T.S. (2010). Mapping the N-terminal residues of Epstein-Barr virus gp42 that bind gH/gL by using fluorescence polarization and cell-based fusion assays. J. Virol. 84, 10375-10385. https://doi.org/10.1128/JVI.00381-10
  35. Longnecker, R., Kieff, E., and Cohen, J. (2013). Epstein-Barr virus, 6th eds. (Philadelphia, PA, Lippincott, Wilkins, and Williams).
  36. Matsuura, H., Kirschner, A.N., Longnecker, R., and Jardetzky, T.S. (2010). Crystal structure of the Epstein-Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex. Proc. Natl. Acad. Sci. USA 107, 22641-22646. https://doi.org/10.1073/pnas.1011806108
  37. Miller, N., and Hutt-Fletcher, L.M. (1992). Epstein-Barr virus enters B cells and epithelial cells by different routes. J. Virol. 66, 3409-3414.
  38. Mohl, B.S., Sathiyamoorthy, K., Jardetzky, T.S., and Longnecker, R. (2014). The conserved disulfide bond within domain II (D-II) of Epstein-Barr virus (EBV) gH has divergent roles in membrane fusion with epithelial cells and B cells. J. Virol. 88, 13570-13579. https://doi.org/10.1128/JVI.02272-14
  39. Mohl, B.S., Schroter, C., Klupp, B.G., Fuchs, W., Mettenleiter, T.C., Jardetzky, T.S., and Longnecker, R. (2015). Comparative mutagenesis of Pseudorabies and Epstein-Barr virus gH identifies a structural determinant within domain III of gH required for surface expression and entry function. J. Virol. 90, 2285-2293.
  40. Mori, Y. (2009). Recent topics related to human herpesvirus 6 cell tropism. Cell Microbiol. 11, 1001-1006. https://doi.org/10.1111/j.1462-5822.2009.01312.x
  41. Mullen, M.M., Haan, K.M., Longnecker, R., and Jardetzky, T.S. (2002). Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1. Mol. Cell 9, 375-385. https://doi.org/10.1016/S1097-2765(02)00465-3
  42. Nemerow, G.R., and Cooper, N.R. (1984). Early events in the infection of human B lymphocytes by Epstein-Barr virus: the internalization process. Virology 132, 186-198. https://doi.org/10.1016/0042-6822(84)90102-8
  43. Ogembo, J.G., Kannan, L., Ghiran, I., Nicholson-Weller, A., Finberg, R.W., Tsokos, G.C., and Fingeroth, J.D. (2013). Human complement receptor type 1/CD35 is an Epstein-Barr Virus receptor. Cell Rep. 3, 371-385. https://doi.org/10.1016/j.celrep.2013.01.023
  44. Omerovic, J., and Longnecker, R. (2007). Functional homology of gHs and gLs from EBV-related gamma-herpesviruses for EBV-induced membrane fusion. Virology 365, 157-165. https://doi.org/10.1016/j.virol.2007.03.054
  45. Omerovic, J., Lev, L., and Longnecker, R. (2005). The amino terminus of Epstein-Barr virus glycoprotein gH is important for fusion with epithelial and B cells. J. Virol. 79, 12408-12415. https://doi.org/10.1128/JVI.79.19.12408-12415.2005
  46. Plate, A.E., Smajlovic, J., Jardetzky, T.S., and Longnecker, R. (2009). Functional analysis of glycoprotein L (gL) from rhesus lymphocryptovirus in Epstein-Barr virus-mediated cell fusion indicates a direct role of gL in gB-induced membrane fusion. J. Virol. 83, 7678-7689. https://doi.org/10.1128/JVI.00457-09
  47. Plate, A.E., Reimer, J.J., Jardetzky, T.S., and Longnecker, R. (2011). Mapping regions of Epstein-Barr virus (EBV) glycoprotein B (gB) important for fusion function with gH/gL. Virology 413, 26-38. https://doi.org/10.1016/j.virol.2010.12.006
  48. Revello, M.G., and Gerna, G. (2010). Human cytomegalovirus tropism for endothelial/epithelial cells: scientific background and clinical implications. Rev. Med. Virol. 20, 136-155. https://doi.org/10.1002/rmv.645
  49. Roche, S., Bressanelli, S., Rey, F.A., and Gaudin, Y. (2006). Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science 313, 187-191. https://doi.org/10.1126/science.1127683
  50. Rogalin, H.B., and Heldwein, E.E. (2015). Interplay between the herpes simplex virus 1 gB cytodomain and the gH cytotail during cell-cell fusion. J. Virol. 89, 12262-12272. https://doi.org/10.1128/JVI.02391-15
  51. Sathiyamoorthy, K., Jiang, J., Hu, Y.X., Rowe, C.L., Möhl, B.S., Chen, J., Jiang, W., Mellins, E.D., Longnecker, R., Zhou, Z.H., et al. (2014). Assembly and architecture of the EBV B cell entry triggering complex. PLoS Pathog. 10, e1004309. https://doi.org/10.1371/journal.ppat.1004309
  52. Schroter, C., Klupp, B.G., Fuchs, W., Gerhard, M., Backovic, M., Rey, F.A., and Mettenleiter, T.C. (2014). The highly conserved proline at position 438 in Pseudorabies Virus gH is important for regulation of membrane fusion. J. Virol. 88, 13064-13072. https://doi.org/10.1128/JVI.01204-14
  53. Silva, A.L., Omerovic, J., Jardetzky, T.S., and Longnecker, R. (2004). Mutational analyses of Epstein-Barr virus glycoprotein 42 reveal functional domains not involved in receptor binding but required for membrane fusion. J. Virol. 78, 5946-5956. https://doi.org/10.1128/JVI.78.11.5946-5956.2004
  54. Silverman, J.L., Greene, N.G., King, D.S., and Heldwein, E.E. (2012). Membrane requirement for folding of the herpes simplex virus 1 gB cytodomain suggests a unique mechanism of fusion regulation. J. Virol. 86, 8171-8184. https://doi.org/10.1128/JVI.00932-12
  55. Spear, P.G., and Longnecker, R. (2003). Herpesvirus entry: an update. J. Virol. 77, 10179-10185. https://doi.org/10.1128/JVI.77.19.10179-10185.2003
  56. Stampfer, S.D., and Heldwein, E.E. (2012). Stuck in the middle: structural insights into the role of the gH/gL heterodimer in herpesvirus entry. Curr. Opin. Virol. 3, 13-19.
  57. Steven, A.C., and Spear, P.G. (2006). Biochemistry. Viral glycoproteins and an evolutionary conundrum. Science 313, 177-178. https://doi.org/10.1126/science.1129761
  58. Tang, H., Wang, J., Mahmoud, N.F., and Mori, Y. (2014). Detailed study of the interaction between human herpesvirus 6B glycoprotein complex and its cellular receptor, human CD134. J. Virol. 88, 10875-10882. https://doi.org/10.1128/JVI.01447-14
  59. Tugizov, S.M., Berline, J.W., and Palefsky, J.M. (2003). Epstein- Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat. Med. 9, 307-314. https://doi.org/10.1038/nm830
  60. Wang, X., Kenyon, W.J., Li, Q., Mullberg, J., and Hutt-Fletcher, L.M. (1998). Epstein-Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. J. Virol. 72, 5552-5558.
  61. Waning, D.L., Russell, C.J., Jardetzky, T.S., and Lamb, R.A. (2004). Activation of a paramyxovirus fusion protein is modulated by inside-out signaling from the cytoplasmic tail. Proc. Natl. Acad. Sci. USA 101, 9217-9222. https://doi.org/10.1073/pnas.0403339101
  62. Wu, L., Borza, C.M., and Hutt-Fletcher, L.M. (2005). Mutations of Epstein-Barr virus gH that are differentially able to support fusion with B cells or epithelial cells. J. Virol. 79, 10923-10930. https://doi.org/10.1128/JVI.79.17.10923-10930.2005
  63. Xing, Y., Oliver, S.L., Nguyen, T., Ciferri, C., Nandi, A., Hickman, J., Giovani, C., Yang, E., Palladino, G., Grose, C., et al. (2015). A site of varicella-zoster virus vulnerability identified by structural studies of neutralizing antibodies bound to the glycoprotein complex gHgL. Proc. Natl. Acad. Sci. USA 112, 6056-6061. https://doi.org/10.1073/pnas.1501176112
  64. Yang, E., Arvin, A.M., and Oliver, S.L. (2014). The cytoplasmic domain of varicella-zoster virus glycoprotein H regulates syncytia formation and skin pathogenesis. PLoS Pathog. 10, e1004173. https://doi.org/10.1371/journal.ppat.1004173
  65. Zago, A., Connolly, S.A., Spear, P.G., and Longnecker, R. (2012). The fusion loops and membrane proximal region of Epstein-Barr virus glycoprotein B (gB) can function in the context of herpes simplex virus 1 gB when substituted individually but not in combination. Virus Res. 171, 227-230.
  66. Zhou, M., Lanchy, J.M., and Ryckman, B.J. (2015). Human cytomegalovirus gH/gL/gO promotes the fusion step of entry into all cell types, whereas gH/gL/UL128-131 broadens virus tropism through a distinct mechanism. J. Virol. 89, 8999-9009. https://doi.org/10.1128/JVI.01325-15

Cited by

  1. The COMPLEXity in herpesvirus entry vol.24, 2017, https://doi.org/10.1016/j.coviro.2017.04.006
  2. Graves’ orbitopathy, idiopathic orbital inflammatory pseudotumor and Epstein–Barr virus infection: a serological and molecular study vol.40, pp.5, 2017, https://doi.org/10.1007/s40618-016-0587-5
  3. Inhibition of EBV-mediated membrane fusion by anti-gHgL antibodies 2017, https://doi.org/10.1073/pnas.1704661114
  4. Functional Relevance of the N-Terminal Domain of Pseudorabies Virus Envelope Glycoprotein H and Its Interaction with Glycoprotein L vol.91, pp.9, 2017, https://doi.org/10.1128/JVI.00061-17
  5. Epstein-Barr Virus Fusion with Epithelial Cells Triggered by gB Is Restricted by a gL Glycosylation Site vol.91, pp.23, 2017, https://doi.org/10.1128/JVI.01255-17
  6. Human MHC-II with Shared Epitope Motifs Are Optimal Epstein-Barr Virus Glycoprotein 42 Ligands—Relation to Rheumatoid Arthritis vol.19, pp.1, 2018, https://doi.org/10.3390/ijms19010317
  7. New Insights from Elucidating the Role of LMP1 in Nasopharyngeal Carcinoma vol.10, pp.4, 2018, https://doi.org/10.3390/cancers10040086
  8. Immunization With Fc-Based Recombinant Epstein–Barr Virus gp350 Elicits Potent Neutralizing Humoral Immune Response in a BALB/c Mice Model vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00932
  9. The biological properties of different Epstein-Barr virus strains explain their association with various types of cancers vol.8, pp.6, 2016, https://doi.org/10.18632/oncotarget.14380
  10. An Antibody Targeting the Fusion Machinery Neutralizes Dual-Tropic Infection and Defines a Site of Vulnerability on Epstein-Barr Virus vol.48, pp.4, 2016, https://doi.org/10.1016/j.immuni.2018.03.026
  11. Transcriptional Profiles of California Sea Lion Peripheral NK and CD +8 T Cells Reflect Ecological Regionalization and Infection by Oncogenic Viruses vol.10, pp.None, 2016, https://doi.org/10.3389/fimmu.2019.00413
  12. Epstein-Barr Virus and Systemic Autoimmune Diseases vol.11, pp.None, 2021, https://doi.org/10.3389/fimmu.2020.587380
  13. Ephrin receptor A2, the epithelial receptor for Epstein-Barr virus entry, is not available for efficient infection in human gastric organoids vol.17, pp.2, 2016, https://doi.org/10.1371/journal.ppat.1009210
  14. Murine Cytomegalovirus MCK-2 Facilitates In Vivo Infection Transfer from Dendritic Cells to Salivary Gland Acinar Cells vol.95, pp.17, 2016, https://doi.org/10.1128/jvi.00693-21
  15. Stress-Induced Epstein-Barr Virus Reactivation vol.11, pp.9, 2021, https://doi.org/10.3390/biom11091380
  16. Cell Fusion and Syncytium Formation in Betaherpesvirus Infection vol.13, pp.10, 2016, https://doi.org/10.3390/v13101973
  17. A potent and protective human neutralizing antibody targeting a novel vulnerable site of Epstein-Barr virus vol.12, pp.1, 2021, https://doi.org/10.1038/s41467-021-26912-6
  18. Interplay between Epstein-Barr virus infection and environmental xenobiotic exposure in cancer vol.16, pp.1, 2016, https://doi.org/10.1186/s13027-021-00391-2
  19. High-Risk Human Papillomavirus and Epstein-Barr Virus Coinfection: A Potential Role in Head and Neck Carcinogenesis vol.10, pp.12, 2016, https://doi.org/10.3390/biology10121232
  20. Antibody Generation and Immunogenicity Analysis of EBV gp42 N-Terminal Region vol.13, pp.12, 2021, https://doi.org/10.3390/v13122380