Overexpressed Mitochondrial Thioredoxin Protects PC12 Cells from Hydrogen Peroxide and Serum-deprivation

  • Lee, Yun-Song (Division of Pharmacology, Department of Molecular & Cellular Biology, Sungkyunkwan University School of Medicine) ;
  • Yu, Seung-A (Division of Pharmacology, Department of Molecular & Cellular Biology, Sungkyunkwan University School of Medicine)
  • Published : 2003.02.21

Abstract

Oxidative damage to mitochondria is a critical mechanism in necrotic or apoptotic cell death induced by many kinds of toxic chemicals. Thioredoxin (Trx) family proteins are known to play protective roles in organisms under oxidative stress through redox reaction by using reducing equivalents of cysteines at a conserved active site, Cys-X-X-Cys. Whereas biological and physiological properties of Trx1 are well characterized, significance of mitochondrial thioredoxin (Trx2) is not well known. Therefore, we addressed physiological role of Trx2 in PC12 cells under oxidative stress. In PC12 cells, transiently overexpressed Trx2 significantly reduced cell death induced by hydrogen peroxide, whereas mutant Trx2, having serine residues instead of two cysteine residues at the active site did not. In addition, stably expressed Trx2 protected PC12 cells from serum deprivation. These results suggest that Trx2 may play defensive roles in PC12 cells by reducing oxidative stress to mitochondria.

Keywords

References

  1. Chen Y, Cai J, Murphy TJ, Jones DP. Overexpressed human mitochondrial thioredoxin confers resistance to oxidant-induced apoptosis in human osteosarcoma cells. J Biol Chem 277: 33242 -33248, 2002 https://doi.org/10.1074/jbc.M202026200
  2. Damdimopoulos AE, Miranda-Vizuete A, Pelto-Huikko M, Gustafsson JA, Spyrou G. Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell death. J Biol Chem 277: 33249-33257, 2002 https://doi.org/10.1074/jbc.M203036200
  3. Estevez AG, Spear N, Manuel SM, Radi R, Henderson CE, Barbeito L, Beckman JS. Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J Neurosci 18: 923-931, 1998
  4. Ferret PJ, Soum E, Negre O, Wollman EE, Fradelizi D. Protective effect of thioredoxin upon NO-mediated cell injury in THP1 monocytic human cells. Biochem J 346: 759-765, 2000 https://doi.org/10.1042/0264-6021:3460759
  5. Green DR, Reed JC. Mitochondria and apoptosis. Science 281: 1309 -1312, 1998 https://doi.org/10.1126/science.281.5381.1309
  6. Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, Mori K, Yodoi J. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem 274: 27891-27897, 1999 https://doi.org/10.1074/jbc.274.39.27891
  7. Hori K, Katayama M, Sato N, Ishii K, Waga S, Yodoi J. Neuroprotection by glial cells through adult T cell leukemia-derived factor/human thioredoxin (ADF/TRX). Brain Res 652: 304-310, 1994 https://doi.org/10.1016/0006-8993(94)90241-0
  8. Keller JN, Kindy MS, Holtsberg FW, St. Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18: 687-697, 1998
  9. Lee SR, Kim JR, Kwon KS, Yoon HW, Levine RL, Ginsburg A, Rhee SG. Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J Biol Chem 274: 4722-4734, 1999 https://doi.org/10.1074/jbc.274.8.4722
  10. Lovell MA, Xie C, Gabbita SP, Markesbery WR. Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer's disease brain. Free Radic Biol Med 28: 418-427, 2000
  11. Luetjens CM, Bui NT, Sengpiel B, Munstermann G, Poppe M, Krohn AJ, Bauerbach E, Krieglstein J, Prehn JH. Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production. J Neurosci 20: 5715-5723, 2000
  12. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 65: 55-63, 1983 https://doi.org/10.1016/0022-1759(83)90303-4
  13. Miranda-Vizuete A, Damdimopoulos AE, Pedrajas JR, Gustafsson JA, Spyrou G. Human mitochondrial thioredoxin reductase cDNA cloning, expression and genomic organization. Eur J Biochem 261: 405-12, 1999 https://doi.org/10.1046/j.1432-1327.1999.00286.x
  14. Mitsui A, Hirakawa T, Yodoi J. Reactive oxygen-reducing and protein-refolding activities of adult T cell leukemia-derived factor/human thioredoxin. Biochem Biophys Res Commun 186: 1220-1226, 1992 https://doi.org/10.1016/S0006-291X(05)81536-0
  15. Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev 80: 315-360, 2000 https://doi.org/10.1152/physrev.2000.80.1.315
  16. Powis G, Montfort WR. Properties and biological activities of thioredoxins. Annu Rev Pharmacol Toxicol 41: 261-95, 2001 https://doi.org/10.1146/annurev.pharmtox.41.1.261
  17. Rybnikova E, Damdimopoulos AE, Gustafsson JA, Spyrou G, Pelto-Huikko M. Expression of novel antioxidant thioredoxin-2 in the rat brain. Eur J Neurosci 12: 1669-1678, 2000 https://doi.org/10.1046/j.1460-9568.2000.00059.x
  18. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17: 2596-2606, 1998 https://doi.org/10.1093/emboj/17.9.2596
  19. Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36: 83-106, 1996 https://doi.org/10.1146/annurev.pa.36.040196.000503
  20. Spyrou G, Enmark E, Miranda-Vizuete A, Gustafsson J. Cloning and expression of a novel mammalian thioredoxin. J Biol Chem 272: 2936-2941, 1997 https://doi.org/10.1074/jbc.272.5.2936
  21. Takagi Y, Mitsui A, Nishiyama A, Nozaki K, Sono H, Gon Y, Hashimoto N, Yodoi J. Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. Proc Natl Acad Sci USA 96: 4131-4136, 1999 https://doi.org/10.1073/pnas.96.7.4131
  22. Tanaka T, Hosoi F, Yamaguchi-Iwai Y, Nakamura H, Masutani H, Ueda S, Nishiyama A, Takeda S, Wada H, Spyrou G, Yodoi J. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria- dependent apoptosis. EMBO J 21: 1695-1703, 2002 https://doi.org/10.1093/emboj/21.7.1695
  23. Wadia JS, Chalmers-Redman RM, Ju WJ, Carlile GW, Phillips JL, Fraser AD, Tatton WG. Mitochondrial membrane potential and nuclear changes in apoptosis caused by serum and nerve growth factor withdrawal: time course and modification by (-)-deprenyl. J Neurosci 18: 932-947, 1998
  24. Wakasugi N, Tagaya Y, Wakasugi H, Mitsui A, Maeda M, Yodoi J, Tursz T. Adult T-cell leukemia-derived factor/thioredoxin, produced by both human T-lymphotropic virus type I- and Epstein-Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2. Proc Natl Acad Sci USA 87: 8282-8286, 1990 https://doi.org/10.1073/pnas.87.21.8282
  25. Yamagata K, Tagami M, Ikeda K, Yamori Y, Nara Y. Altered gene expressions during hypoxia and reoxygenation in cortical neurons isolated from stroke-prone spontaneously hypertensive rats. Neurosci Lett 284: 131-134, 2000 https://doi.org/10.1016/S0304-3940(00)00936-8