• Title/Summary/Keyword: physics simulation

Search Result 1,117, Processing Time 0.026 seconds

Mechanical performance analysis of an electromagnetic friction pendulum system based on Maxwell's principle

  • Mao Weikang;Li Xiaodong;Chen Enliang
    • Earthquakes and Structures
    • /
    • v.27 no.2
    • /
    • pp.143-154
    • /
    • 2024
  • Friction pendulums typically suffer from poor uplift-restraining. To improve the uplift-restraining and enhance the energy dissipation capacity, this article proposed a composite isolation device based on electromagnetic forces. The device was constructed based on a remote control system to achieve semi-active control of the composite isolation device. This article introduces the theory and design of an electromagnetic chuck-friction pendulum system (ECFPS) and derives the theoretical equation for the ECFPS based on Maxwell's electromagnetic attraction equation to construct the proposed model. By conducting 1:3 scale tests on the electromagnetic device, the gaps between the practical, theoretical, and simulation results were analyzed, and the accuracy and effectiveness of the theoretical equation for the ECFPS were investigated. The hysteresis and uplift-restraining performance of ECFPS were analyzed by adjusting the displacement amplitude, vertical load, and input current of the simulation model. The data obtained from the scale test were consistent with the theoretical and simulated data. Notably, the hysteresis area of the ECFPS was 35.11% larger than that of a conventional friction pendulum. Lastly, a six-story planar frame structure was established through SAP2000 for a time history analysis. The isolation performances of ECFPS and FPS were compared. The results revealed that, under horizontal seismic action, the horizontal seismic response of the bottom layer of the ECFPS isolation structure is greater than that of the FPS, the horizontal vibration response of the top layer of the ECFPS isolation structure is smaller than that of the FPS, and the axial force at the bottom of the columns of the ECFPS isolation structure is smaller than that of the FPS isolation structure. Therefore, the reliable uplift-restraining performance is facilitated by the electromagnetic force generated by the device.

Monte Carlo Simulation of the Carbon Beam Nozzle for the Biomedical Research Facility in RAON (한국형 중이온 가속기 RAON의 의생물 연구시설 탄소 빔 노즐에 대한 Monte Carlo 시뮬레이션)

  • Bae, Jae-Beom;Cho, Byung-Cheol;Kwak, Jung-Won;Park, Woo-Yoon;Lim, Young-Kyung;Chung, Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • The purpose of the Monte Carlo simulation study was to provide the optimized nozzle design to satisfy the beam conditions for biomedical researches in the Korean heavy-ion accelerator, RAON. The nozzle design was required to produce $C^{12}$ beam satisfying the three conditions; the maximum field size, the dose uniformity and the beam contamination. We employed the GEANT4 toolkit in Monte Carlo simulation to optimize the nozzle design. The beams for biomedical researches were required that the maximum field size should be more than $15{\times}15cm^2$, the dose uniformity was to be less than 3% and the level of beam contamination due to the scattered radiation from collimation systems was less than 5% of total dose. For the field size, we optimized the tilting angle of the circularly rotating beam controlled by a pair of dipole magnets at the most upstream of the user beam line unit and the thickness of the scatter plate located downstream of the dipole magnets. The values of beam scanning angle and the thickness of the scatter plate could be successfully optimized to be $0.5^{\circ}$ and 0.05 cm via this Monte Carlo simulation analysis. For the dose uniformity and the beam contamination, we introduced the new beam configuration technique by the combination of scanning and static beams. With the combination of a central static beam and a circularly rotating beam with the tilting angle of $0.5^{\circ}$ to beam axis, the dose uniformity could be established to be 1.1% in $15{\times}15cm^2$ sized maximum field. For the beam contamination, it was determined by the ratio of the absorbed doses delivered by $C^{12}$ ion and other particles. The level of the beam contamination could be achieved to be less than 2.5% of total dose in the region from 5 cm to 17 cm water equivalent depth in the combined beam configuration. Based on the results, we could establish the optimized nozzle design satisfying the beam conditions which were required for biomedical researches.

Effects of Scintillation Crystal Surface Treatments on Small Gamma Camera Imaging (섬광체 옆 표면처리가 소형 감마카메라 영상에 미치는 효과)

  • Kim, J. H.;Choi, Y.;Kim, J. Y.;Oh, C. H.;Kim, S. E.;Choe, Y. S.;Lee, K. H.;Joo, K. S.;Kim, B. T.
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.6
    • /
    • pp.515-521
    • /
    • 1999
  • Scintillator crystal is an important part and detcrmines performance characteristics of the gamma camera. We investigated the offects of scintillation crystal surface treatment on gamma camera imaging. Nal(TI) and Csl(Tl) scintillators. 20 mm diameter and 10 mm thickness, applied with two different surface treatments, white and black reflcetors, were applied to Nal(Tl) and Csl(Ti). The optical properties of generated scintillation light were evaluated by Monte Carlo simulation method and by actual measurement using a position sensitive photomultiplier tube (PSPMT). We measured sensitivity, energy resolution and spatial resolution of gamma camera with the various scintillators coupled to a PSPMT. In the simulation. Nal(Tl)-white prosented the best sensitivity. In the measurements, the sensitivities and the intrinsic spatial resolutions of Nal(Tl)-white, Nal(Tl)-black. CsI(Tl)-white, CsI(Tl)-black were 2920, 2322, 1754, 1401 cps/$\mu$ci and 5.2, 4.5, 7.0, 6.3 mm FWHM. respectively. Their intrinsic energy resolutions were mesured 12.5, 23.5, 20.5, 33.3% FWHM at 140 keV Tc-99m. In this study, we investigated the offects of a side surface treatment of the scintillator on the gamma camera imaging. Simulation and measurement prescnted similat trends. Based on the results, we concluded that the surface of th NaI(Tl)seintillator must be treated by absorptive materials in order to develop the gamma camera having good spatial resolution.

  • PDF

The Comparative Analysis of External Dose Reconstruction in EPID and Internal Dose Measurement Using Monte Carlo Simulation (몬테 카를로 전산모사를 통한 EPID의 외부적 선량 재구성과 내부 선량 계측과의 비교 및 분석)

  • Jung, Joo-Young;Yoon, Do-Kun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.253-258
    • /
    • 2013
  • The purpose of this study is to evaluate and analyze the relationship between the external radiation dose reconstruction which is transmitted from the patient who receives radiation treatment through electronic portal imaging device (EPID) and the internal dose derived from the Monte Carlo simulation. As a comparative analysis of the two cases, it is performed to provide a basic indicator for similar studies. The geometric information of the experiment and that of the radiation source were entered into Monte Carlo n-particle (MCNPX) which is the computer simulation tool and to derive the EPID images, a tally card in MCNPX was used for visualizing and the imaging of the dose information. We set to source to surface distance (SSD) 100 cm for internal measurement and EPID. And the water phantom was set to be 100 cm of the source to surface distance (SSD) for the internal measurement and EPID was set to 90 cm of SSD which is 10 cm below. The internal dose was collected from the water phantom by using mesh tally function in MCNPX, accumulated dose data was acquired by four-portal beam exposures. At the same time, after getting the dose which had been passed through water phantom, dose reconstruction was performed using back-projection method. In order to analyze about two cases, we compared the penetrated dose by calibration of itself with the absorbed one. We also evaluated the reconstructed dose using EPID and partially accumulated (overlapped) dose in water phantom by four-portal beam exposures. The sum dose data of two cases were calculated as each 3.4580 MeV/g (absorbed dose in water) and 3.4354 MeV/g (EPID reconstruction). The result of sum dose match from two cases shows good agreement with 0.6536% dose error.

Mixed-mode simulation of transient characteristics of 4H-SiC DMOSFETs - Impact off the interface changes (Mixde-mode simulation을 이용한 4H-SiC DMOSFETs의 계면상태에서 포획된 전하에 따른 transient 특성 분석)

  • Kang, Min-Seok;Choe, Chang-Yong;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.55-55
    • /
    • 2009
  • Silicon Carbide (SiC) is a material with a wide bandgap (3.26eV), a high critical electric field (~2.3MV/cm), a and a high bulk electron mobility (${\sim}900cm^2/Vs$). These electronic properties allow high breakdown voltage, high frequency, and high temperature operation compared to Silicon devices. Although various SiC DMOSFET structures have been reported so far for optimizing performances. the effect of channel dimension on the switching performance of SiC DMOSFETs has not been extensively examined. In this paper, we report the effect of the interface states ($Q_s$) on the transient characteristics of SiC DMOSFETs. The key design parameters for SiC DMOSFETs have been optimized and a physics-based two-dimensional (2-D) mixed device and circuit simulator by Silvaco Inc. has been used to understand the relationship with the switching characteristics. To investigate transient characteristic of the device, mixed-mode simulation has been performed, where the solution of the basic transport equations for the 2-D device structures is directly embedded into the solution procedure for the circuit equations. The result is a low-loss transient characteristic at low $Q_s$. Based on the simulation results, the DMOSFETs exhibit the turn-on time of 10ns at short channel and 9ns at without the interface charges. By reducing $SiO_2/SiC$ interface charge, power losses and switching time also decreases, primarily due to the lowered channel mobilities. As high density interface states can result in increased carrier trapping, or recombination centers or scattering sites. Therefore, the quality of $SiO_2/SiC$ interfaces is important for both static and transient properties of SiC MOSFET devices.

  • PDF

Development of Supportive Device Design for Artificial Hand Based on Virtual Simulation (가상 시뮬레이션을 이용한 의수 보조 장치 디자인 개발)

  • Lee, Ji-Won;Han, Ji-Young;Na, Dong-Kyu;Nah, Ken
    • Journal of Digital Convergence
    • /
    • v.15 no.10
    • /
    • pp.455-465
    • /
    • 2017
  • This study focuses on design development and verification through virtual simulation based on 3D model data in the cloud platform as a method of utilization of engineering technology of design in the fourth industrial revolution era. The goal of research is to develop and examine a design for the needs of the target that has never been met before through virtual simulations that can be conducted in practice. As a research method, we analyzed secondary data to identify the needs of the target, and did literature research for the ergonomic data and target body development stages. In addition, the design development process of this study was shown meaningful result in design, structure, safety, material, durability through loop test of 7 virtual simulations. This study can be applied to the automated process system based on 3D model data in the 4th industrial revolution era and can be used as an element of the cyber physics system for the additional research.

Understanding and predicting physical properties of rocks through pore-scale numerical simulations (공극스케일에서의 시뮬레이션을 통한 암석물성의 이해와 예측)

  • Keehm, Young-Seuk;Nur, Amos
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.201-206
    • /
    • 2006
  • Earth sciences is undergoing a gradual but massive shift from description of the earth and earth systems, toward process modeling, simulation, and process visualization. This shift is very challenging because the underlying physical and chemical processes are often nonlinear and coupled. In addition, we are especially challenged when the processes take place in strongly heterogeneous systems. An example is two-phase fluid flow in rocks, which is a nonlinear, coupled and time-dependent problem and occurs in complex porous media. To understand and simulate these complex processes, the knowledge of underlying pore-scale processes is essential. This paper presents a new attempt to use pore-scale simulations for understanding physical properties of rocks. A rigorous pore-scale simulator requires three important traits: reliability, efficiency, and ability to handle complex microstructures. We use the Lattice-Boltzmann (LB) method for singleand two-phase flow properties, finite-element methods (FEM) for elastic and electrical properties of rocks. These rigorous pore-scale simulators can significantly complement the physical laboratory, with several distinct advantages: (1) rigorous prediction of the physical properties, (2) interrelations among the different rock properties in a given pore geometry, and (3) simulation of dynamic problems, which describe coupled, nonlinear, transient and complex behavior of Earth systems.

  • PDF

Intelligent Washing Machine: A Bioinspired and Multi-objective Approach

  • Milasi, Rasoul Mohammadi;Jamali, Mohammad Reza;Lucas, Caro
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.436-443
    • /
    • 2007
  • In this paper, an intelligent method called BELBIC (Brain Emotional Learning Based Intelligent Controller) is used to control of Locally Linear Neuro-Fuzzy Model (LOLIMOT) of Washing Machine. The Locally Linear Neuro-Fuzzy Model of Washing Machine is obtained based on previously extracted data. One of the important issues in using BELBIC is its parameters setting. On the other hand, the controller design for Washing Machine is a multi objective problem. Indeed, the two objectives, energy consumption and effectiveness of washing process, are main issues in this problem, and these two objectives are in contrast. Due to these challenges, a Multi Objective Genetic Algorithm is used for tuning the BELBIC parameters. The algorithm provides a set of non-dominated set points rather than a single point, so the designer has the advantage of selecting the desired set point. With considering the proper parameters after using additional assumptions, the simulation results show that this controller with optimal parameters has very good performance and considerable saving in energy consumption.

Simulation of High-current Vacuum Arcs: (I)Axial Magnetic Field (진공차단부 대전류 아크 해석: (I)축방향 자기장)

  • Hwang, Jung-Hoon;Lee, Jong-Chul;Choi, Myung-Jun;Kwon, Jung-Lock;Kim, Youn-Jea
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2500-2505
    • /
    • 2007
  • The vacuum interrupter (VI) is used for medium-voltage switching circuits due to its abilities and advantages as a compact and environmental friendly circuit breaker. In general, the application of a sufficiently strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. A full understanding of the vacuum arc physics is very important since it can aid to improve the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, we have investigated the electromagnetic behaviors of high-current vacuum arcs for two different types of AMF contacts, which are coil-type and cup-type, using a commercial finite element analysis (FEA) package, ANSYS. The present results are compared with those of MAXWELL 3D, a reliable electromagnetic analysis software, for verification.

  • PDF

Enhanced mass balance Tafel slope model for computer based FEM computation of corrosion rate of steel reinforced concrete coupled with CO2 transport

  • Hussain, Raja Rizwan
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.177-192
    • /
    • 2011
  • This research paper aims at computer based modeling of carbonation induced corrosion under extreme conditions and its experimental verification by incorporating enhanced electrochemical and mass balance equations based on thermo-hygro physics with strong coupling of mass transport and equilibrium in micro-pore structure of carbonated concrete for which the previous research data is limited. In this paper the carbonation induced electrochemical corrosion model is developed and coupled with carbon dioxide transport computational model by the use of a concrete durability computer based model DuCOM developed by our research group at concrete laboratory in the University of Tokyo and its reliability is checked in the light of experiment results of carbonation induced corrosion mass loss obtained in this research. The comparison of model analysis and experiment results shows a fair agreement. The carbonation induced corrosion model computation reasonably predicts the quantitative behavior of corrosion rate for normal air dry relative humidity conditions. The computational model developed also shows fair qualitative corrosion rate simulation and analysis for various pH levels and coupled environmental actions of chloride and carbonation. Detailed verification of the model for the quantitative carbonation induced corrosion rate computation under varying relative conditions, different pH levels and combined effects of carbonation and chloride attack remain as scope for future research.