Mixed-mode simulation는 이용한 4H-SiC DMOSFETs의 계면상태에서 포착된 전하에 따른 transient 특성 분석

김민석1, 최성용1, 방철2, 김상철1, 강남균1, 구상모1
1공은대학교, 2한국전기연구원

Mixed-mode simulation of transient characteristics of 4H-SiC DMOSFETs - Impact off the interface charges

Min-Seok Kang1, Wook Bang2, Sang-Chul Kim3, Nam-Kyun Kim3, Sang-Mo Koo
1Kwangwoon Univ., 2Korea Electrotechnology Research Institute (KERI)
*Corresponding Author : smkoo@kw.ac.kr

Abstract: Silicon Carbide (SiC) is a material with a wide bandgap (3.26eV), a high critical electric field (~2.3MV/cm), and a high bulk electron mobility (~900cm²/Vs). These electronic properties allow high breakdown voltage, high frequency, and high temperature operation compared to Silicon devices. Although various SiC DMOSFET structures have been reported so far for optimizing performances, the effect of channel dimension on the switching performance of SiC DMOSFETs has not been extensively examined.

In this paper, we report the effect of the interface states (Qs) on the transient characteristics of SiC DMOSFETs. The key design parameters for SiC DMOSFETs have been optimized and a physics-based two-dimensional (2-D) mixed device and circuit simulator by Silvaco Inc. has been used to understand the relationship with the switching characteristics. To investigate transient characteristic of the device, mixed-mode simulation has been performed, where the solution of the basic transport equations for the 2-D device structures is directly embedded into the solution procedure for the circuit equations. The result is a low-loss transient characteristic at low Qs. Based on the simulation results, the DMOSFETs exhibit the turn-on time of 10ns at short channel and 9ns at without the interface charges. By reducing SiO2/SiC interface charge, power losses and switching time also decreases, primarily due to the lowered channel mobilities. As high density interface states can result in increased carrier trapping, or recombination centers or scattering sites. Therefore, the quality of SiO2/SiC interfaces is important for both static and transient properties of SiC MOSFET devices.

Key Words: Silicon carbide, Transient, Interface charge, DMOSFET

감사의 글

본 논문은 산업지원부가 지원하는 국가 반도체연구사업인 "시스템 잡적분산기술개발사업 (시스템IC2010)"을 통해 개발된 결과임을 밝힙니다.