• Title/Summary/Keyword: physics simulation

Search Result 1,117, Processing Time 0.027 seconds

Unsteady Three-Dimensional Analysis of Transverse Fuel Injection into a Supersonic Crossflow using Detached Eddy Simulation Part II : Reacting Flowfield (DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석 Part II : 반응 유동장)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.879-888
    • /
    • 2009
  • Unsteady three-dimensional reacting flowfield generated by transverse hydrogen injection into a supersonic mainstream is numerically investigated using DES and finite-rate chemistry model. Comparisons are made with experimental results to investigate the turbulent reacting flow physics. The numerical OH distribution describes well the experimental OH-PLIF result, while the numerical ignition delay time shows some disparity due to the restricted available experimental data. The intermittency phenomena are identified by the comparative analysis between RANS and DES. Those effects are also quantified by the temperature distributions along streamlines and superimposed OH mass fraction along with time.

NUMERICAL SIMULATION ON CONTROL OF ENVIRONMENTAL VARIABLES FOR ENVIRONMENT REPRODUCTION SYSTEM USING OPENFOAM (OpenFOAM을 이용한 대규모 환경재현 시스템 내에서의 환경변수 제어 시뮬레이션)

  • Jeong, S.M.;Kagemoto, Hiroshi;Park, J.C.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • The feasibility of a unique greenhouse, named as Gradient Biome, is now being examined extensively in the University of Tokyo. It is a large chamber (length:200m, width:50m, height:40m) in which the weather, such as temperature and humidity, of the tropical zone through to that of the frigid zone on the earth is reproduced with continuous gradient. In the Gradient Biome, ecosystems (mainly plants) corresponding to each weather are introduced and the possible responses of this ecosystems to the expected global warming are to be observed. Since one of the expected responses is the shift of the ecosystem(s) toward the region of suitable environment, there should be no artificial obstacles, which can prevent the shift, inside the Biome. This requirement is not so easy to be satisfied since the environment tends to be homogeneous. This paper presents the results of the numerical studies conducted to find the ways of how the temperature and humidity in the Gradient Biome could be reproduced. One of the contributed solvers of OpenFOAM, which is an open source physics simulation code, was modified and used for the numerical simulations.

Cutoff Probe Analysis and Improvement

  • Kim, Dae-Ung;Yu, Sin-Jae;Yu, Gwang-Ho;Park, Min;Kim, Jeong-Hyeong;Seong, Dae-Jin;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.142-142
    • /
    • 2011
  • Microwave diagnostics method for plasma science and engineering is vigorous research area for its good characteristics such as high sensitivity, reliability, and broad measurement spectrum from low density plasma to high density. We investigate mechanism of microwave probes (hairpin, impedance and absorbtionf probe) and apply it for interpretation of full transmitted spectrum of cutoff probe. Mechanism of the spectrum having same key roles of I-V curve of Langmuir probe is not exactly revealed yet in spite of its importance. This study elucidates physics behind it using a circuit model and E/M wave simulation. Circuit model reveals exact cut-off peak frequency taking account of a collision frequency and a plasma frequency and it enable precise diagnostics of plasma densty from low pressure to high pressre. Cut-off like peaks have been obstacle for choosing cut-off peak is analyzed by E/M simulation and one of cutoff like peaks made by probe holder used for acquire plasma density with cutoff peak applying the hairpin relation. Furthermore, phase difference method for plasma density is conducted. This method uses a single microwave frequency source and it is low-priced.

  • PDF

Neutronics analysis of TRIGA Mark II research reactor

  • Rehman, Haseebur;Ahmad, Siraj-ul-Islam
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.35-42
    • /
    • 2018
  • This article presents clean core criticality calculations and control rod worth calculations for TRIGA (Training, Research, Isotope production-General Atomics) Mark II research reactor benchmark cores using Winfrith Improved Multi-group Scheme-D/4 (WIMS-D/4) and Program for Reactor In-core Analysis using Diffusion Equation (PRIDE) codes. Cores 133 and 134 were analyzed in 2-D (r, ${\theta}$) and 3-D (r, ${\theta}$, z), using WIMS-D/4 and PRIDE codes. Moreover, the influence of cross-section data was also studied using various libraries based on Evaluated Nuclear Data File (ENDF/B-VI.8 and VII.0), Joint Evaluated Fission and Fusion File (JEFF-3.1), Japanese Evaluated Nuclear Data Library (JENDL-3.2), and Joint Evaluated File (JEF-2.2) nuclear data. The simulation results showed that the multiplication factor calculated for all these data libraries is within 1% of the experimental results. The reactivity worth of the control rods of core 134 was also calculated with different homogenization approaches. A comparison was made with experimental and reported Monte Carlo results, and it was found that, using proper homogenization of absorber regions and surrounding fuel regions, the results obtained with PRIDE code are significantly improved.

Adaptive Mesh Refinement for Dealing with Shock Wave Analysis (폭발현상 해석을 위한 적응적 요소망 생성)

  • Jun, Yongtae;Lee, Minhyung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.6
    • /
    • pp.461-469
    • /
    • 2013
  • Computer simulation with FEM is very useful to analyze hypervelocity impact phenomena that are tremendously expensive or otherwise too impractical to analyze experimentally. Shock physics can be efficiently handled by mesh adaptation which allows finite element mesh to be locally optimized to resolve moving shock wave in explosion. In this paper, an adaptive meshing technique based upon quadtree data structure was applied to resolve ballistic impact phenomena. The technique can adaptively refine a mesh in the neighborhood of a shock and coarsen the mesh for the smooth flow behind the shock according to a criterion. The criterion for refinement and coarsening is based upon the standard deviation of the gradient of shock pressure on the associated field. Shock simulation starts with the rough mesh of the pressure field and mesh density is increased locally under the criterion at each time step. The results show that the mesh adaptation enables to minimize the global computation error of FEM and to increase storage and computational saving compared to the fixed resolution of the conventional static mesh approach.

Simulated Courseware Design and Materialization of Light Reflection and Refraction (빛의 반사 및 굴절 시뮬레이션 코스웨어 설계 및 구현)

  • 조용준;박덕원
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.3
    • /
    • pp.60-66
    • /
    • 1999
  • The purpose of this study is to design and materialize the simulated courseware which is based on new educational environments and student-based education. The scope of this study is reflection and refraction of in the physics of high school. This paper introduce the theoretical background of courseware and investigate the structure and process of the teaching-theory by visualized computer simulation. We applied the basic concept about the reflection and refraction of light and explained the simulated images of spherical mirror and lens with the principles expressions and relative image forms. The last we simulated the various kinds of the images, shapes and distance of the images by changing the distance of object and focus which are made by computer simulation.

Numerical Simulation of Selective Withdrawal in Stably Stratified Flows (안정성층류에서 선택취수의 수치해석)

  • Paik, Joong-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.11
    • /
    • pp.973-984
    • /
    • 2005
  • A three-dimensional thermal hydrodynamic model is developed for carrying out unsteady simulation of the selective withdrawal of the stably stratified flow in a geometrically complex, natural reservoir The governing equations are discretized on a non-staggered grid using a second-order accurate, finite-volume scheme. The numerical model is validated by applying it to simulate three-dimensional, turbulent, stratified, shear-layer flow case. The numerical predictions appear to capture reasonably well the general shape of velocity and temperature profiles observed in the laboratory experiments, while significant overestimation of the magnitude of velocity profiles is observed in the application to the flow in a natural reservoir. The physics of selective withdrawal as emerge from the numerical simulations are also discussed.

Experimental Characterization-Based Signal Integrity Verification of Sub-Micron VLSI Interconnects

  • Eo, Yung-Seon;Park, Young-Jun;Kim, Yong-Ju;Jeong, Ju-Young;Kwon, Oh-Kyong
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.5
    • /
    • pp.17-26
    • /
    • 1997
  • Interconnect characterization on a wafer level was performed. Test patterns for single, two-coupled, and triple-coupled lines ere designed by using 0.5$\mu\textrm{m}$ CMOS process. Then interconnect capacitances and resistances were experimentally extracted by using tow port network measurements, Particularly to eliminate parasitic effects, the Y-parameter de-embedding was performed with specially designed de-embedding patterns. Also, for the purpose of comparisons, capacitance matrices were calculated by using the existing CAD model and field-solver-based commercial simulator, METAL and MEDICI. This work experimentally verifies that existing CAD models or parameter extraction may have large deviation from real values. The signal transient simulation with the experimental data and other methodologies such as field-solver-based simulation and existing model was performed. as expected, the significantly affect on the signal delay and crosstalk. The signal delay due to interconnects dominates the sub-micron-based a gate delay (e.g., inverter). Particularly, coupling capacitance deviation is so large (about more than 45% in the worst case) that signal integrity cannot e guaranteed with the existing methodologies. The characterization methodologies of this paper can be very usefully employed for the signal integrity verification or he electrical design rule establishments of IC interconnects in the industry.

  • PDF

Monte Carlo Investigation of Spatially Adaptable Magnetic Behavior in Stretchable Uniaxial Ferromagnetic Monolayer Film

  • Laosiritaworn, Yongyut;Laosiritaworn, Wimalin
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.11-20
    • /
    • 2015
  • In this work, Monte Carlo simulation was employed to model the stretchable Ising monolayer film to investigate the effect of the spatial distance variation among magnetic atoms on magnetic behavior of the film. The exchange interaction was considered as functions of initial interatomic distance and the stretched distance (or the strain). Following Bethe-Slater picture, the magnetic exchange interaction took the Lennard-Jones potential-like function. Monte Carlo simulations via the Wolff and Metropolis algorithms were used to update the spin systems, where equilibrium and dynamic magnetic profiles were collected. From the results, the strain was found to have strong influences on magnetic behavior, especially the critical behavior. Specifically, the phase transition point was found to either increase or decrease depending on how the exchange interaction shifts (i.e. towards or away from the maximum value). In addition, empirical functions which predict how the critical temperatures scale with initial interatomic distance and the strain were proposed, which provides qualitatively view how to fine tune the magnetic critical point in monolayer film using the substrate modification induced strain.

A Practical Method to Compute the Closest Approach Distance of Two Ellipsoids (두 타원체 사이의 최단 근접 거리를 구하는 실용적인 방법)

  • Choi, Min Gyu
    • Journal of Korea Game Society
    • /
    • v.19 no.1
    • /
    • pp.5-14
    • /
    • 2019
  • This paper presents a practical method to compute the closest approach distance of two ellipsoids in their inter-center direction. This is the key technique for collision handling in the dynamic simulation of rigid and deformable bodies approximated with ellipsoids. We formulate a set of equations with the inter-center distance and the contact point and normal for the two ellipsoids contacting each other externally. The equations are solved using fixed-point iteration and Aitken's delta-squared process. In addition, we introduce a novel stopping criterion expressed in terms of the error in distance. We demonstrate the efficiency and practicality of our method in various experiments.