• Title/Summary/Keyword: physical memory

Search Result 474, Processing Time 0.024 seconds

Coupling shape-memory alloy and embedded informatics toward a metallic self-healing material

  • Faravelli, Lucia;Marzi, Alessandro
    • Smart Structures and Systems
    • /
    • v.6 no.9
    • /
    • pp.1041-1056
    • /
    • 2010
  • This paper investigates the possibility of a strategy for an automatic full recover of a structural component undergoing loading-unloading (fatigue) cycles: full recover means here that no replacement is required at the end of the mission. The goal is to obtain a material capable of self healing earlier before the damage becomes irreversible. Attention is focused on metallic materials, and in particular on shape memory alloys, for which the recovering policy just relies on thermal treatments. The results of several fatigue tests are first reported to acquire a deep understanding of the physical process. Then, for cycles of constant amplitude, the self-healing objective is achieved by mounting, on the structural component of interest, a suitable microcontroller. Its input, from suitable sensors, covers the current stress and strain in the alloy. The microcontroller elaborates from the input the value of a decisional parameter and activates the thermal process when a threshold is overcome.

Distortion in Visual Memory for Wide-angle Image (광각 이미지에 대한 시각적 기억의 왜곡)

  • Jang, Phil-Sik
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.11-16
    • /
    • 2007
  • Viewers remember seeing more of the scene than was present in the physical input: an illusion known as boundary extension. This study examined the aspects of the distortion by presenting 69 subjects with wide-angle views of four scenes. Results of recognition and reproduction test showed that the boundary extension is not a unidirectional phenomenon. On the contrary, boundary restriction and foreground extension were observed with extreme wide-angle views of scenes. Results support the hypothesis that boundary restriction and foreground extension were mediated by the activation of a memory schema during picture perception.

Fiber-reinforced micropolar thermoelastic rotating Solid with voids and two-temperature in the context of memory-dependent derivative

  • Alharbi, Amnah M.;Said, Samia M.;Abd-Elaziz, Elsayed M.;Othman, Mohamed I.A.
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.347-358
    • /
    • 2022
  • The main concern of this article is to discuss the problem of a two-temperature fiber-reinforced micropolar thermoelastic medium with voids under the effect rotation, mechanical force in the context four different theories with memory-dependent derivative (MDD) and variable thermal conductivity. The three-phase-lag model (3PHL), dual-phase-lag model (DPL), Green-Naghdi theory (G-N II, G-N III), coupled theory, and the Lord-Shulman theory (L-S) are employed to solve the present problem. Analytical expressions of the physical quantities are obtained by using Laplace-Fourier transforms technique. Numerical results are shown graphically and the results obtained are analyzed. The most significant points are highlighted.

The buffer Management system for reducing write/erase operations in NAND flash memory (NAND 플래시 메모리에서 쓰기/지우기 연산을 줄이기위한 버퍼 관리 시스템)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.1-10
    • /
    • 2011
  • There are the large overhead of block erase and page write operations in NAND flash memory, though it has low power consumption, cheap prices and a large storage. Due to the physical characteristics of NAND flash memory, overwrite operations are not permitted at the same location, so rewriting operation require after erase operation. it cause performance decrease of NAND flash memory. Using SRAM buffer in traditional NAND flash memory, it can not only reduce effective write operation but also guarantee fast memory access time. In this paper, we proposed the small SRAM buffer management system for reducing overhead of NAND flash memory, that is, erase and write operations. The proposed buffer system in a NAND flash memory consists of two parts, i.e., a fully associative temporal buffer with the small fetching block size and a fully associative spatial buffer with the large fetching block size. The temporal buffer have small fetching blocks that referenced from spatial buffer. When it happen write operations or erase operations in NAND flash memory, the related fetching blocks in temporal buffer include a page or a block are written in NAND flash memory at the same time. The writing and erasing counts in NAND flash memory can be reduced. According to the simulation results, although we have high miss ratios, write and erase operations can be reduced approximatively 58% and 83% respectively. Also the average memory access times are improved about 84% compared with the fully associative buffer with two sizes.

EAST: An Efficient and Advanced Space-management Technique for Flash Memory using Reallocation Blocks (재할당 블록을 이용한 플래시 메모리를 위한 효율적인 공간 관리 기법)

  • Kwon, Se-Jin;Chung, Tae-Sun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.476-487
    • /
    • 2007
  • Flash memory offers attractive features, such as non-volatile, shock resistance, fast access, and low power consumption for data storage. However, it has one main drawback of requiring an erase before updating the contents. Furthermore, flash memory can only be erased limited number of times. To overcome limitations, flash memory needs a software layer called flash translation layer (FTL). The basic function of FTL is to translate the logical address from the file system like file allocation table (FAT) to the physical address in flash memory. In this paper, a new FTL algorithm called an efficient and advanced space-management technique (EAST) is proposed. EAST improves the performance by optimizing the number of log blocks, by applying the state transition, and by using reallocation blocks. The results of experiments show that EAST outperforms FAST, which is an enhanced log block scheme, particularly when the usage of flash memory is not full.

Flash Memory File System for Mobile Devices (이동 기기를 위한 플래시 메모리 파일 시스템)

  • Bae Young Hyun;Choi Jongmoo;Lee Donghee;Noh Sam H.;Min Sang Lyul
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.4
    • /
    • pp.368-380
    • /
    • 2005
  • File systems for flash memory that is widely used as a storage device for mobile devices should provide not only high-performance data reads and writes but also a guarantee on the data integrity even on a power failure. In this paper, we explain the design and implementation of a file system for flash memory that considers flash memory's physical characteristics and the data layout in the file system to give an optimized write performance. This file system guarantees the reliability against various system failures including a power failure by using the transaction concept in write processing. In addition, the file system minimizes the memory usage by using a simple static mapping. In the paper, we also describe the implementation of the file system and compare its performance with other existing flash memory ille systems.

Effect of Node Size on the Performance of the B+-tree on Flash Memory (플래시 메모리 상에서 B+-트리 노드 크기 증가에 따른 성능 평가)

  • Park, Dong-Joo;Choi, Hae-Gi
    • The KIPS Transactions:PartA
    • /
    • v.15A no.6
    • /
    • pp.325-334
    • /
    • 2008
  • Flash memory is widely used as a storage medium for mobile devices such as cell phones, MP3 players, PDA's due to its tiny size, low power consumption and shock resistant characteristics. Additionally, some computer manufacturers try to replace hard-disk drives used in Laptops or personal computers with flash memory. More recently, there are some literatures on developing a flash memory-aware $B^+$-tree index for an efficient key-based search in the flash memory storage system. They focus on minimizing the number of "overwrites" resulting from inserting or deleting a sequence of key values to/from the $B^+$-tree. However, in addition to this factor, the size of a physical page allocated to a node can affect the maintenance cost of the $B^+$-tree. In this paper, with diverse experiments, we compare and analyze the costs of construction and search of the $B^+$-tree and the space requirement on flash memory as the node size increases. We also provide sorting-based or non-sorting-based algorithms to be used when inserting a key value into the node and suggest an header structure of the index node for searching a given key inside it efficiently.

A Self-Description File System for NAND Flash Memory (낸드 플래시 메모리를 위한 자기-서술 파일 시스템)

  • Han, Jun-Yeong;Park, Sang-Oh;Kim, Sung-Jo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.2
    • /
    • pp.98-113
    • /
    • 2009
  • Conventional file systems for harddisk drive cannot be applied to NAND flash memory, because the physical characteristics of NAND flash memory differs from those of harddisk drive. To address this problem, various file systems with better reliability and efficiency have also been developed recently. However, those file systems have inherent overheads for updating the file's metadata pages, because those file systems save file's meta-data and data separately. Furthermore, those file systems have a critical reliability problem: file systems fail when either a page in meta-data of a file system or a file itself fails. In this paper, we propose a self-description page technique and In Memory Core File System technique to address these efficiency and reliability problems, and develop SDFS(Self-Description File System) newly. SDFS can be safely recovered, although some pages fail, and improves write and read performance by 36% and 15%, respectively, and reduces mounting time by 1/20 compared with YAFFS2.

Development of Measurement System of Public Strength for Physical Fitness (체격 및 체력층정을 위한 국민체력 층정시스템의 개발)

  • 한영환;이응혁
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.85-94
    • /
    • 1995
  • We have developed MSPF (measurement system for physical fitness) which measures physical strength and body dimensions. This system has two main features, one is an automatic measurement of physical fitness, and the other is reducement of reading and writing errors caused by human during measurement. Using the MSPF, total ten items can be measured such as weight, height, sit up, push up,. etc. Since the system which have objectification and high precision has been needed, we used a memory card. By using this, it was easy to save and archive data by computer.

  • PDF

Transfer Matrix Algorithm for Computing the Geometric Quantities of a Square Lattice Polymer

  • Lee, Julian
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1808-1813
    • /
    • 2018
  • I develop a transfer matrix algorithm for computing the geometric quantities of a square lattice polymer with nearest-neighbor interactions. The radius of gyration, the end-to-end distance, and the monomer-to-end distance were computed as functions of the temperature. The computation time scales as ${\lesssim}1.8^N$ with a chain length N, in contrast to the explicit enumeration where the scaling is ${\sim}2.7^N$. Various techniques for reducing memory requirements are implemented.