• Title/Summary/Keyword: physical dependence

Search Result 364, Processing Time 0.032 seconds

Physical Properties of Mercaptopyruvic-acid Layer Formed on Gold Surfaces

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2611-2616
    • /
    • 2011
  • We studied the physical properties of the mercaptopyruvic-acid layer formed on gold surfaces, which has the interactions with the titanium dioxide surface for design of gold- titanium dioxide distribution. Surface force measurements were performed, using the atomic force microscope (AFM), between the surfaces as a function of the salt concentration and pH value. The forces were analyzed with the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory, to evaluate the potential and charge density of the surfaces quantitatively for each salt concentration and each pH value. The difference in the properties reflected the effect of the isoelectric point on the surface forces. The forces were interpreted for the evaluation with the law of mass action and the ionizable groups on the surface. The salt concentration dependence of the surface properties, found from the measurement at pH 8.0, was consistent with the prediction from the law. It was found that the mercaptopyruvic-acid layer had higher values for the surface charge densities and potentials than the titanium dioxide surfaces at pH 8, which may be attributed to the ionized-functional-groups of the mercaptopyruvic-acid layer.

Defect Chemistry of the Mixed Conducting Cage Compound Ca12Al14O33

  • Janek, J.;Lee, D.K.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • The electrical transport properties of mayenite ($Ca_{12}Al_{14}O_{33}$ or $12CaO{\cdot}7Al_2O_3$; mostly abbreviated as $C_{12}A_7$) can be controlled in a wide range by varying the oxygen deficiency: At high temperatures mayenite becomes either an oxygen solid electrolyte, a mixed ionic/electronic conductor or an inorganic electride with metal-like properties upon chemical reduction (removing oxygen). The underlying defect chemistry can be understood on the basis of a relatively simple model-despite the complex cage structure: A point defect model based on the assumption that the framework $[Ca_{12}Al_{14}O_{32}]^{2+}$ acts as a pseudo-donor describes well the high temperature transport properties. It accounts for the observed conductivity plateau at higher oxygen activities and also describes the experimentally observed oxygen activity dependence of the electronic conductivity with -1/4 slope at temperatures between 800 and $1000^{\circ}C$. Doping effects in mayenite are still not well explored, and we review briefly the existing data on doping by different elements. Hydration of mayenite plays a crucial role, as Mayenite is hygroscopic, which may be a major obstacle for technical applications.

Measurement of the Time Constant of Industrial Platinum Resistance Thermometers (산업용 백금저항온도계의 시정수 측정)

  • Kim, Yong-Gyoo;Kim, Sook-Hyang;Yang, In-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.41-46
    • /
    • 2009
  • We present experimental data on the time response behavior of industrial platinum resistance thermometers (IPRT) to help with the selection of proper sensors in industry and research laboratories. Time constants of IPRTs were measured using a method specified in ASTM standards. Two different sensors of different protecting sheath diameters were tested in air, water and silicon oil at temperatures from $0^{\circ}C$ to $200^{\circ}C$. The time constant was the smallest in water and the highest in air. As the test temperature increased, time constants tended to decrease at all heat conducting media. For different diameters of sheath of IPRT at the same temperature, it was found that the IPRT of larger diameter showed higher time constant in air, but the opposite dependence was observed in water and oil. From the measured results, it was suggested that the sensor diameter and heat conducting medium should be considered if one wants to select proper thermometer to measure the dynamic temperature change in industry and research area.

Experimental analysis of an asymmetric reinforced concrete bridge under vehicular loads

  • Thambiratnam, D.P.;Brameld, G.H.;Memory, T.J.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.1
    • /
    • pp.17-35
    • /
    • 2000
  • Dynamic response of a three span continuous bridge has been determined by full scale experiments on the bridge. In the experiments, a heavy vehicle was driven across the bridge at different speeds and along different lanes of travel and the strains were recorded at different locations. The bridge was made of reinforced concrete and was asymmetric in plan and in elevation. Frequencies and modes of vibration excited by the vehicle were determined. The dependence of the dynamic amplification on bridge location and vehicle speed was investigated and dynamic amplifications up to 1.5 were recorded, which was higher than values predicted by bridge design codes. It was evident that when this asymmetric bridge was loaded by an asymmetric forcing function, higher modes, which are lateral and/or torsional in nature, were excited. Dynamic modulus of elasticity and the support stiffness influenced the natural frequencies of the bridge, which in turn influenced the dynamic amplifications. Larger than anticipated dynamic amplification factors and the excitation of lateral and/or torsional modes should be of interest and concern to bridge engineers.

Electrical Characteristics of InAlAs/InGaAs/InAlAs Pseudomorphic High Electron Mobility Transistors under Sub-Bandgap Photonic Excitation

  • Kim, H.T.;Kim, D.M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.3
    • /
    • pp.145-152
    • /
    • 2003
  • Electrical gate and drain characteristics of double heterostructure InAlAs/InGaAs pseudomorphic HEMTs have been investigated under sub-bandgap photonic excitation ($hv). Drain $(V_{DS})-,{\;}gate($V_{DS})-$, and optical power($P_{opt}$)-dependent variation of the abnormal gate leakage current and associated physical mechanisms in the PHEMTs have been characterized. Peak gate voltage ($V_{GS,P}$) and the onset voltage for the impact ionization ($V_{GS.II}$) have been extracted and empirical model for their dependence on the $V_{DS}$ and $P_{opt} have been proposed. Anomalous gate and drain current, both under dark and under sub-bandgap photonic excitation, have been modeled as a parallel connection of high performance PHEMT with a poor satellite FET as a parasitic channel. Sub-bandgap photonic characterization, as a function of the optical power with $h\nu=0.799eV$, has been comparatively combined with those under dark condition for characterizing the bell-shaped negative humps in the gate current and subthreshold drain leakage under a large drain bias.

Thickness dependence of grain growth orientation in MgB2 films fabricated by hybrid physical-chemical vapor deposition

  • Ranot, Mahipal;Kang, W.N.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.9-11
    • /
    • 2013
  • We have investigated the effect of thickness of the MgB2 film on the grain growth direction as well as on their superconducting properties. $MgB_2$ films of various thicknesses were fabricated on c-cut $Al_2O_3$ substrates at a temperature of $540^{\circ}C$ by using hybrid physical-chemical vapor deposition (HPCVD) technique. The superconducting transition temperature ($T_c$) was found to increase with increase in the thickness of the $MgB_2$ film. X-ray diffraction analysis revealed that the orientation of grains changed from c-axis to a-axis upon increasing the thickness of the $MgB_2$ film from 0.6 to 2.0 ${\mu}m$. $MgB_2$ grains of various orientations were observed in the microstructures of the films examined by scanning electron microscopy. It is observed that at high magnetic fields the 2.0-${\mu}m$-thick film exhibit considerably larger critical current density ($J_c$) as compared to 0.6-${\mu}m$-thick film. The results are discussed in terms of an intrinsic-pinning in $MgB_2$ similarly as intrinsic-pinning occurring in high-Tc cuprate superconductors with layered structure.

Concept Development of Grief-Focusing on the Process of Spousal Bereavement (애도 개념개발 - 배우자 사별과정을 중심으로 -)

  • Lee, Mi-Ra
    • Journal of Korean Academy of Nursing
    • /
    • v.37 no.7
    • /
    • pp.1119-1130
    • /
    • 2007
  • Purpose: This study was done to develop the concept of grief focusing on the process of spousal bereavement in Korea. Methods: The Hybrid model was used for analysis according to the 3 phases. An extensive literature review was done for the Theoretical phase. In-depth interviews were conducted with 15 participants whose spouses died within the past 3 years in the Field phase. In the Final analytic phase, the results in the Theoretical and the Field phases were compared, analyzed, and integrated according to the process of grief. Results: The antecedent of the concept of spousal grief was spousal death. The dimensions of grief were classified to inner dimensions related to oneself, relational dimensions related to family and others, and existential dimensions related to the meaning of being. The attributes of grief were physical suffering, decline of cognitive ability, heartbreaking sorrow, expectations and conflicts of a new life, social stigma, dependence on or resentment towards God, etc. The empirical referent of grief was physical, psychological, social, and spiritual health status. The grieving progressed through 3 phases-shock-emancipation, suffering, and integration. Conclusion: Nurses should recognize the importance of their unique position as supporters for grievers, and try to assess individual characteristics and to provide tailored nursing interventions.

Single-Crystal like MgB2 thin films grown on c-cut sapphire substrates

  • Duong, Pham Van;Ranot, Mahipal;Kang, Won Nam
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.7-9
    • /
    • 2014
  • Single-crystal like $MgB_2$ thin film was grown on (000l) $Al_2O_3$ substrate by using hybrid physical-chemical vapor deposition (HPCVD) system. Single crystal properties were studied by X-ray diffraction (XRD) and the full width at half maximum (FWHM) of the (0001) $MgB_2$ peak is $15^{\circ}$, which is very close to that has been reported for $MgB_2$ single-crystal. It indicates that the crystalline quality of thin film is good. Temperature dependence on resistivity was investigated by physical property measurement system (PPMS) in various applied fields from 0 to 9 T. The upper critical field ($H_{c2}$) and irreversibility field ($H_{irr}$) were determined from PPMS data, and the estimated values are comparable with that of $MgB_2$ single-crystals. The thin film shows a high critical temperature ($T_c$) of 40.4 K with a sharp superconducting transition width of 0.2 K, and a high residual resistivity ratio (RRR=21), it reflects that $MgB_2$ thin film has a pure phase structure.

Volume Resistivity Properties of Polyethylene Terephthalate Film due to Temperature Variation (온도변화에 따른 폴리에틸렌텔레프탈레이트 박막의 체적고유저항 특성)

  • Youn, J.I.;Ko, K.Y.;Shin, H.T.;Shin, J.Y.;Lee, C.H.;Hong, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.224-227
    • /
    • 2002
  • In this paper, we have investigated the physical properties and electrical conduction properties of polyethylene terephthalate film due to temperature variation, and the measurement of volume resistivity used to highmegohm meter is measured from 1 to 10 minutes when the specimen applied the voltage accroding to the step voltage appling method. From FT-IR spectrum as an analysis of physical properties, the strong absorption in wavenumbers $1019[cm^{-1}]$, $1266[cm^{-1}]$ and $1752[cm^{-1}]$ observed by the C=O and benzene ring. From the analysis of DSC, the crystalline melting points of the specimen observed in the temperature $80[^{\circ}C]$ and $263[^{\circ}C]$, respectively.

  • PDF

Dependence of the physical properties for magnetic core materials on the concentrations of $Bi_2O_3$ and CaO ($Bi_2O_3$와 CaO 첨가에 따른 PLC용 자심 재료의 물성)

  • An, Y.W.;Lee, H.Y.;Kim, J.R.;Kim, H.S.;Oh, Y.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.64-67
    • /
    • 2002
  • The Physical and magnetic properties such as microstructure, permeability and power loss of Ni-Zn ferrite with composition of $Ni_{0.8}Zn_{0.2}Fe_2O_4$, were investigated as the function of $Bi_2O_3$ and CaO contents. The power loss increased in proportion to the amount of $Bi_2O_3$ up to 0.3 wt% but it decreased over than 0.3 wt% addition. The highest permeability of 134 was obtained to the specimen added 1.0 wt% $Bi_2O_3$ since $Bi_2O_3$ contents were strongly dominant to grain growth and size than that of CaO. $Bi_2O_3$ liquid phase created during sintering process promoted sintering and grain growth so that grain size and permeability increased compared to that of the specimens which were sintered with free-additive and CaO. Also, lots of pores existed in the specimen which was added $Bi_2O_3$ wt% with the biggest grain size.

  • PDF