DOI QR코드

DOI QR Code

Single-Crystal like MgB2 thin films grown on c-cut sapphire substrates

  • Duong, Pham Van (BK21 Physic Division and Department of Physic, Sungkyunkwan University) ;
  • Ranot, Mahipal (BK21 Physic Division and Department of Physic, Sungkyunkwan University) ;
  • Kang, Won Nam (BK21 Physic Division and Department of Physic, Sungkyunkwan University)
  • Received : 2014.09.04
  • Accepted : 2014.09.29
  • Published : 2014.09.30

Abstract

Single-crystal like $MgB_2$ thin film was grown on (000l) $Al_2O_3$ substrate by using hybrid physical-chemical vapor deposition (HPCVD) system. Single crystal properties were studied by X-ray diffraction (XRD) and the full width at half maximum (FWHM) of the (0001) $MgB_2$ peak is $15^{\circ}$, which is very close to that has been reported for $MgB_2$ single-crystal. It indicates that the crystalline quality of thin film is good. Temperature dependence on resistivity was investigated by physical property measurement system (PPMS) in various applied fields from 0 to 9 T. The upper critical field ($H_{c2}$) and irreversibility field ($H_{irr}$) were determined from PPMS data, and the estimated values are comparable with that of $MgB_2$ single-crystals. The thin film shows a high critical temperature ($T_c$) of 40.4 K with a sharp superconducting transition width of 0.2 K, and a high residual resistivity ratio (RRR=21), it reflects that $MgB_2$ thin film has a pure phase structure.

Keywords

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, "Superconductivity at 39 K in magnesium diboride," Nature, 410, pp. 63-64, 2001. https://doi.org/10.1038/35065039
  2. J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov and L. L. Boyer, "Superconductivity of metallic Boron in $MgB_2$," Phys. Rev. Lett., 86 , pp. 4656, 2001. https://doi.org/10.1103/PhysRevLett.86.4656
  3. S. Souma, Y. Machida, T. Sato, T. Takahashi, H. Matsui, S. C. Wang, H. Ding, A. Kaminski, J. C. Campuzano, S. Sasaki and K. Kadowaki, "The origin of multiple superconducting gaps in $MgB_2$," Nature, 423, pp. 65-67, 2003. https://doi.org/10.1038/nature01619
  4. D. C. Larbalestier, L. D. Cooley, M. O. Rikel, A. A. Polyanskii, J. Jiang, S. Patnaik, X. Y. Cai, D. M. Feldmann, A. Gurevich, A. A. Squitieri, M. T. Naus, C. B. Eom, E. E. Hellstrom, R. J. Cava, K. A. Regan, N. Rogado, M. A. Hayward, T. He, J. S. Slusky, P. Khalifah, K. Inumaru and M. Haas, "Strongly linked current flow in polycrystalline forms of the superconductor $MgB_2$," Nature, 410, pp. 186-189, 2001. https://doi.org/10.1038/35065559
  5. M. Xu, H. Kitazawa, Y. Takano, J. Ye, K. Nishida, H. Abe, A. Matsushita, N. Tsujii and G. Kido, "Anisotropy of superconductivity from $MgB_2$ single crystals," Appl. Phys. Lett., 79, pp. 2779, 2001. https://doi.org/10.1063/1.1413729
  6. S. H. Moon, J. H. Yun, H. N. Lee, J. I. Kye, H. G. Kim, W. Chung and B. Oh, "High critical current densities in superconducting $MgB_2$ thin films," Appl. Phys. Lett., 79, pp. 2429, 2001. https://doi.org/10.1063/1.1407854
  7. M. Ranot and W. N. Kang, "$MgB_2$ coated superconducting tapes with high critical current densities fabricated by hybrid physicalchemical vapor deposition," Curr. Appl. Phys., 12, pp. 353-363, 2012. https://doi.org/10.1016/j.cap.2011.09.003
  8. W. K. Seong, J. Y. Huh, W. N. Kang, J. W. Kim, Y. S. Kwon, N. K. Yang and J. G. Park, "Growth of Epitaxial $MgB_2$ Thick films with Columnar Structures by Using HPCVD," Chem. Vapor Deposition 13, pp. 680-683, 2007. https://doi.org/10.1002/cvde.200706636
  9. W. K. Seong, W. N. Kang, S. J. Oh, J. K. Jung, C. J. Kim and J. Joo, "Superconducting property of single-crystal like $MgB_2$ thin film," Physica C, Vol. 470, pp. 1465-1467, 2010. https://doi.org/10.1016/j.physc.2010.05.139
  10. A. V. Pogrebnyakov, J. M. Redwing, S. Raghavan, V. Vaithyanathan, D. G. Schlom, S. Y. Xu, Qi Li, D. A. Tenne, A. Soukiassian, X. X. Xi, M. D. Johannes, D. Kasinathan, W. E. Pickett, J. S. Wu and J. C. H. Spence, "Enhancement of the Superconducting transition temperature of $MgB_2$ by a Strain-Induced Bond-Stretching mode softening," Phys. Rev. Lett., 93, pp. 147006-1, 2004. https://doi.org/10.1103/PhysRevLett.93.147006
  11. C. G. Zhuang, S. Meng, C. Y. Zhang, Q. R. Feng, Z. Z. Gan, H. Yang, Y. Jia, H. H. Wen and X. X. Xi, "Ultrahigh current-carrying capability in clean $MgB_2$ films," J. Appl. Phys., 104, pp. 013924, 2008. https://doi.org/10.1063/1.2952052
  12. S. R. Chauhan and S. Chaudhary, "On the Residual Resistivity Ratio in $MgB_2$ Superconductors," IEEE. Trans. Appl. Supercond., Vol. 20, No. 1, 2010.
  13. T. Masui, S. Lee and S. Tajima, "Effect of the growing process on the electronic properties of $MgB_2$ single crystals," Physica C, Vol. 392-396, Part 1, pp. 281-285, 2003. https://doi.org/10.1016/S0921-4534(03)01080-3
  14. A. Gurevich, "Enhancement of the upper critical field by nonmagnetic impurities in dirty tow-gap superconductors," Phys. Rev. B 67, pp. 184515, 2003. https://doi.org/10.1103/PhysRevB.67.184515
  15. C. G. Zhuang, T. Tan, Y. H. Wang, S. S. Bai, X. B. Ma, H. Yang, G. H. Zhang, Y. S. He, H. Wen, X. X. Xi, Q. R. Feng and Z. H. Gan, "Clean $MgB_2$ thin films on different types of single-crystal substrate fabricated by hybrid physical-chemical vapor deposition," Supercond. Sci. Technol., Vol. 22, pp. 025002, 2009. https://doi.org/10.1088/0953-2048/22/2/025002