• Title/Summary/Keyword: physical and strength properties

Search Result 2,369, Processing Time 0.034 seconds

Preparation and Characterizations of Ionomer-coated Pore-filled Ion-exchange Membranes for Reverse Electrodialysis (역전기투석 응용을 위한 이오노머가 코팅된 세공충진 이온교환막의 제조 및 특성분석)

  • Kim, Do-Hyeong;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.43-54
    • /
    • 2016
  • In this study, we have prepared engineering polymer-based ionomers and pore-filled ion-exchange membranes (PFIEMs) employing a porous polyethylene substrate and combined them to fabricate the ionomer-PFIEM composite membranes for the reverse electrodialysis (RED) application. Both the electrochemical properties comparable to those of the commercial ion-exchange membranes (AMX/CMX, Astom Corp., Japan) and the physical stability adaptable to the practical uses have been achieved by integrating the ionomers having a high ion conductivity and the PFIEMs with an excellent mechanical strength. The RED performances have been evaluated by employing the prepared ionomer-PFIEM composite membranes and therefore excellent power generation performances were shown as the levels of 86.4% and 104.8% for the anion-exchange membrane and cation-exchange membrane, respectively, compared with those of the commercial membranes.

Screening of Spray-Dried K2CO3-Based Solid Sorbents using Various Support Materials for CO2 Capture

  • Eom, Tae Hyoung;Lee, Joong Beom;Baek, Jeom In;Ryub, Chong Kul;Rhee, Young Woo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.115-120
    • /
    • 2015
  • $K_2CO_3$-based dry regenerable sorbents were prepared by spray-drying techniques to improve mass produced $K_2CO_3-Al_2O_3$ sorbents (KEP-CO2P, hereafter), and then tested for their $CO_2$ sorption capacity by a $2,000Nm^3/h$ (0.5 MWe) $CO_2$ capture pilot plant built for Unit 3 of the Hadong thermal power station in 2010. Each of the sample sorbents contained 35 wt.% $K_2CO_3$ as the active materials with various support materials such as $TiO_2$, MgO, Zeolite 13X, $Al_2O_3$, $SiO_2$ and hydrotalcite (HTC). Their physical properties and reactivity were tested to evaluate their applicability to a fluidized-bed or fast transport-bed $CO_2$ capture process. The $CO_2$ sorption capacity and percentage utilization of $K_2CO_3$-MgO based sorbent, Sorb-KM2, was $8.6g-CO_2/100g$-sorbents and 90%, respectively, along with good mechanical strength for fluidized-bed application. Sorbs-KM2 and KT were almost completely regenerated at $140^{\circ}C$. No degradation of Sorb-KM by $SO_2$ added as a pollutant in flue gas was observed during a cycle test.

Characteristics of (Sr1-xBax)NdFe3+1-τFe4+τO4-y System Heat-treated in Air

  • Lee, Eun-Seok;Hag, Jang-Chun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.39-42
    • /
    • 2012
  • To study the physical and chemical properties, solid solutions of $(Sr_{1-x}Ba_x)NdFe{^{3+}}_{1-\tau}Fe{^{4+}}_{\tau}O_{4-y}$ system with x=0.0(SBN-0), 0.1(SBN-1), 0.2(SBN-2) and 0.3(SBN-3) were synthesized in air at 1,473 K and annealed in air at 1,073 K for 24 h. X-ray powder diffraction assured that the four samples had tetragonal symmetries (I4/mmm). Their lattice volumes increased gradually with x values. Nonstoichiometric chemical formulas were formulated using the data such as $\tau$(amount of $Fe^{4+}$ ion) and y(oxygen deficiency) values using Mohr salt analysis. It was found out that all the four samples had excessive oxygen (4-y>4.0). All the samples started to lose some of their oxygen at around 613K(TG/DTA thermal analysis). They exhibited semiconductivities in the temperature range of around 283-1173K. All the four specimens had sufficient tensile strength to endure the force of 19.6 N (2 kg of weights) and the conductivity values of the ECIAs which were painted on pieces of glass with the area of $150mm^2$ ($10mm{\times}15mm$) and it was in the order of ECIA-0${\rightarrow}$ECIA-1${\rightarrow}$ECIA-2${\rightarrow}$ECIA-3 at a constant temperature.

Incorporation of amoxicillin-loaded microspheres in mineral trioxide aggregate cement: an in vitro study

  • Fabio Rocha Bohns;Vicente Castelo Branco Leitune;Isadora Martini Garcia;Bruna Genari;Nelio Bairros Dornelles Junior;Silvia Staniscuaski Guterres;Fabricio Aulo Ogliari;Mary Anne Sampaio de Melo;Fabricio Mezzomo Collares
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.50.1-50.11
    • /
    • 2020
  • Objectives: In this study, we investigated the potential of amoxicillin-loaded polymeric microspheres to be delivered to tooth root infection sites via a bioactive reparative cement. Materials and Methods: Amoxicillin-loaded microspheres were synthesized by a spray-dray method and incorporated at 2.5% and 5% into a mineral trioxide aggregate cement clinically used to induce a mineralized barrier at the root tip of young permanent teeth with incomplete root development and necrotic pulp. The formulations were modified in liquid:powder ratios and in composition by the microspheres. The optimized formulations were evaluated in vitro for physical and mechanical eligibility. The morphology of microspheres was observed under scanning electron microscopy. Results: The optimized cement formulation containing microspheres at 5% exhibited a delayed-release response and maintained its fundamental functional properties. When mixed with amoxicillin-loaded microspheres, the setting times of both test materials significantly increased. The diametral tensile strength of cement containing microspheres at 5% was similar to control. However, phytic acid had no effect on this outcome (p > 0.05). When mixed with modified liquid:powder ratio, the setting time was significantly longer than that original liquid:powder ratio (p < 0.05). Conclusions: Lack of optimal concentrations of antibiotics at anatomical sites of the dental tissues is a hallmark of recurrent endodontic infections. Therefore, targeting the controlled release of broad-spectrum antibiotics may improve the therapeutic outcomes of current treatments. Overall, these results indicate that the carry of amoxicillin by microspheres could provide an alternative strategy for the local delivery of antibiotics for the management of tooth infections.

Effect of Consolidation using Artificial Porous Material for Stone Cultural Property (인공 다공질체를 이용한 석조문화재 강화제의 처리효과)

  • Lee, Jae-Man;Lee, Myeong-Seong;Kim, Jae-Hwan;Lee, Mi-Hye
    • Journal of Conservation Science
    • /
    • v.26 no.3
    • /
    • pp.325-334
    • /
    • 2010
  • In order to clarify the effect of consolidant, the artificial porous material with low intensity was manufactured using granite powder and Portland cement. We have prepared four kinds of alkoxysilane system consolidants, a acrylic resin and a epoxy resin and investigated about characteristics before and after consolidation. As a result of the research, Silres BS OH 100 was effective for density and surface hardness. SS-101 with hydrophobicity and Site SX-RO with hydrophilicity had the good durability over salts weathering. On the other hand, Syton HT-50 and Paraloid B72 were easily destructed by salt weathering because they were concentrated on surface area by the low penetration depth. Araldite 2020 was the most effective consolidant for improvement of physical properties.

Prediction of Strength and Propagation Characteristics of Supersonic Flight Sonic Boom (초음속 비행체의 소닉붐 강도와 전파 특성 예측)

  • Jung, Suk Young;Ha, Jae-hyoun;Lee, Younghwan;Jin, Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.497-504
    • /
    • 2020
  • A technique was developed for analysis on sonic boom created by supersonic flight and for prediction of its sound level and atmospheric propagation characteristics. It is of great importance to anticipate sound level of sonic boom because it causes environmental issue. For that purpose, the simplified sonic-boom prediction method was applied to calculate sound pressure according to physical properties and flight information of the object and distance to measurement site, in this study. Propagation characteristics of shock wave emanated from a flying object was analyzed by using line-of-sight vector and ray tracing method which dealt with refraction of wave due to atmospheric density distribution along altitude. Predicted results agreed well with measured data from real flight.

Rheological Models for Describing Fine-laden Debris Flows: Grain-size Effect (세립토 위주의 토석류에 관한 유변학적 모델: 입자크기 효과)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.49-61
    • /
    • 2011
  • This paper presents the applicability of rheological models for describing fine-laden debris flows and analyzes the flow characteristics as a function of grain size. Two types of soil samples were used: (1) clayey soils - Mediterranean Sea clays and (2) silty soils - iron ore tailings from Newfoundland, Canada. Clayey soil samples show a typical shear thinning behavior but silty soil samples exhibit the transition from shear thinning to the Bingham fluid as shear rate is increased. It may be due to the fact that the determination of yield stress and plastic viscosity is strongly dependent upon interstructrual interaction and strength evolution between soil particles. So grain size effect produces different flow curves. For modeling debris flows that are mainly composed of fine-grained sediments (<0.075 mm), we need the yield stress and plastic viscosity to mimic the flow patterns like shape of deposition, thickness, length of debris flow, and so on. These values correlate with the liquidity index. Thus one can estimate the debris flow mobility if one can measure the physical properties.

Effect of Milling Time on Pore Size and Distribution of Ti-Nb-Zr Biomaterials with Space Holder Consolidated by Spark Plasma Sintering

  • Kim, Dong-Gun;Woo, Kee-Do;Kang, Dong-Soo;Lee, Tack
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.111-115
    • /
    • 2014
  • Titanium and its alloys are useful for implant materials. In this study, porous Ti-Nb-Zr biomaterials were successfully synthesized by powder metallurgy using a $NH_4HCO_3$ as space holder and $TiH_2$ as foaming agent. Consolidation of powder was accomplished by spark plasma sintering process(SPS) at $850^{\circ}C$ under 30 MPa condition. The effect of high energy milling time on pore size and distribution in Ti-Nb-Zr alloys with space holder($NH_4HCO_3$) was investigated by optical microscope(OM), scanning electron microscope(SEM) & energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD). Microstructure observation revealed that, a lot of pores were uniformly distributed in the Ti-Nb-Zr alloys as size of about $30-100{\mu}m$ using mixed powder and milled powders. In addition, the pore ratio was found to be about 5-20% by image analysis, using an image analyzer(Image Pro Plus). Furthermore, the physical properties of specimens were improved with increasing milling time as results of hardness, relative density, compressive strength and Young's modulus. Particularly Young's modulus of the sintered alloy using 4h milled powder reached 52 GPa which is similar to bone elastic modulus.

Study on the characteristics and biodegradable of synthetic PLGA membrane from lactic acid and glycolic acid (젖산 및 글리콜산에서 합성된 PLGA 멤브레인의 특성과 생분해성에 관한 연구)

  • Xie, Yuying;Park, Jong-Soon;Kang, Soon-Kook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2958-2965
    • /
    • 2015
  • The PLGA(Poly lactide-co-glycolide) Copolymer have been actively applied to the medical implant material as biomaterials. PLGA membrane was able to alveoloplasty with osteotomy for favorable degradation characteristics and possibilities for sustained drug delivery. In this study, PLGA membrane was prepared using phase inversion method, and examined to optical method analysis(NMR, IR), mechanical property measurement (tearing strength) and thermal characteristic analysis(DSC). In addition, the biodegradation characteristics of the PLGA membrane filled with a PBS(Phosphate Buffered Solution) of the water bath ($60^{\circ}C$) according to the degree of surface degradation in the degradation time, the pH change of the solution and change of the mass of the membrane were measured.

Hard Coatings on Polycarbonate Plate by Sol-Gel Process (폴리카보네이트 판 위에 졸-겔 과정을 이용한 하드 코팅)

  • Ji, Young Jon;Kim, Hae Young;Yoon, Yeo Seong;Lee, Seung Woo;Shin, Jae Sup
    • Journal of Adhesion and Interface
    • /
    • v.6 no.3
    • /
    • pp.10-18
    • /
    • 2005
  • The hard coatings on the polycarbonate plate were performed with the object of substitution the glass in the car to the polycarbonate plate. In this research, tetraethyl orthosilicate (TEOS), methyltriethoxysilane (MTES) were used to prepare the coatings by sol-gel process. The optimum conditions and formulation to get the excellent physical properties were determined. The pretreatment condition of polycarbonate plate, the mole ratio of TEOS and MTES, selection of the solvent, the aging time, the amount of acid catalyst, and the number of folds of coating were characterized. Pretreatment with poly(methyl methacrylate) was very effective to increase the adhesion strength. The smooth coating which got the 2 H class in pencil hardness was formed in this research by sol-gel process.

  • PDF