DOI QR코드

DOI QR Code

Prediction of Strength and Propagation Characteristics of Supersonic Flight Sonic Boom

초음속 비행체의 소닉붐 강도와 전파 특성 예측

  • Received : 2020.04.22
  • Accepted : 2020.06.23
  • Published : 2020.07.01

Abstract

A technique was developed for analysis on sonic boom created by supersonic flight and for prediction of its sound level and atmospheric propagation characteristics. It is of great importance to anticipate sound level of sonic boom because it causes environmental issue. For that purpose, the simplified sonic-boom prediction method was applied to calculate sound pressure according to physical properties and flight information of the object and distance to measurement site, in this study. Propagation characteristics of shock wave emanated from a flying object was analyzed by using line-of-sight vector and ray tracing method which dealt with refraction of wave due to atmospheric density distribution along altitude. Predicted results agreed well with measured data from real flight.

초음속 비행으로 인해 발생하는 소닉붐을 해석하여 소닉붐의 소음 강도와 대기 전파 특성에 예측할 수 있는 기법을 개발하였다. 소닉붐은 환경 문제를 유발하므로 지상에서 계측되는 소음 강도가 매우 중요한데 본 연구에서는 개략 분석 기법을 이용하여 비행체의 물리량과 비행 정보로부터 계측지 거리에 따른 음압을 산출하였다. 소닉붐의 지상 계측을 위해 비행체에서 발산되는 충격파의 대기 전파 특성을 예측해야하며 이를 위해 시선벡터법과 음선추적기법을 이용하였고, 대기 밀도의 고도별 분포에 따른 굴절을 고려하였다. 개발된 기법을 이용하여 실제 초음속 비행체의 소닉붐을 예측하였고 측정결과와 잘 일치하였다.

Keywords

References

  1. Sonic Boom Demonstrator and the Quest fir Quiet Supersonic Flight), NASA Aeronautical Book Series, 2013.
  2. Calson, H. W. and Maglieri, D. J., "Review of Sonic-Boom Generation Theory and Prediction Methods," The Journal of the Acoustical Society of America, Vol. 51, No. 2, 1972.
  3. Hayes, W. D., Haefeli, R. C. and Kulsrud, H. E., "Sonic Boom Propagation in a Stratified Atmosphere with Computer Program," NASA CR-1299, 1969.
  4. Carlson, H. W., "Simplified Sonic-Boom Prediction," NASA TP-1122, 1978.
  5. Bishop, D. W., Haber, J. M. and Wilby, E. G., "Noise and Sonic Boom Impact Technology, PCBOOM Computer Program for Sonic Boom Research, Volume 1, Technical Report," HSD TR-88- 001-Vol-1, BBN Labs, INC., 1998.
  6. Hobbs, C. M. and Page, J. A., "PCBoom Model Prediction Comparisions with Flight Test Measurement Data," AIAA 2011-1277, 49th AIAA Aerospace Sciences Meeting, January 2011.
  7. Pilon, A. R., "Spectrally Accurate Prediction of Sonic Boom Signals," AIAA Journal, Vol. 45, No. 9, 2007.
  8. Jeong, S., Ono, D., Shioyama, K. and Hashimoto, A., "Sonic Boom Analysis Considering Atmospheric Uncertainties Using A pliynomial Chaos," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2012, pp. 77-80.
  9. Sim, H. S., Choi, K. S. and Cho, S. Y., "Analysis of Sonic Boom from the Launch of a Space Launch Vehicle," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2015, pp. 1409-1413.
  10. Jung, S. Y., Ha, J, Jin, H. and Lee, Y., "Estimation of Sonic-Boom Strength based on Simplified Prediction Method," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April, 2018, pp. 454-455.
  11. Jung, S. Y., Ha, J, Jin, H. and Lee, Y., "Line-of-Sight Vector and Ray Tracing Technique for Sonic-Boom Propagation," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2017, pp. 64-65.
  12. Blackstock, D. T., Fundamentals of Physical Acoustics, New York, 1999, pp. 284-294.
  13. Maglieri, D. J., Bobbitt, P. J., Plotkin, K. J., Shepherd, K. P., Coen, P. G. and Richwine, D. M., Sonic Boom : Six Decades of Research, NASA/SP- 2014-622, Langley Research Center, Hampton, VA, 2014, pp. 26-27.
  14. Jung, S. Y., Ha, J, Lee, Y. and Jin, H., "Study on Sonic Boom Analysis and Measurement," ADDR-401-180452, Agency for Defence Development, 2018.
  15. Jung, S. Y., Lee, J. E. and Kim, M. G. "Construction of Atmosphere Environment on Flight Trajectory using Numerical Meteorology Model Data," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2019, pp. 1-2.