• Title/Summary/Keyword: physical and chemical effects

Search Result 858, Processing Time 0.027 seconds

Extrusion enhances apparent metabolizable energy, ileal protein and amino acid digestibility of palm kernel cake in broilers

  • Faridah, Hanim Shakirin;Goh, Yong Meng;Noordin, Mohamed Mustapha;Liang, Juan Boo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1965-1974
    • /
    • 2020
  • Objective: This study consisted of two stages; the first was to determine the effect of extrusion and sieving treatments on the chemical properties of palm kernel cake (PKC), and accordingly, a follow-up experiment (second stage) was conducted to determine and compare the apparent metabolizable energy (AME), and protein and amino acid digestibility of extruded and sieved PKC. Methods: Two physical treatments, namely extrusion (using temperature profiles of 90℃/100℃/100℃, 90℃/100℃/110℃, and 90℃/100℃/120℃) and sieving (to 8 particles sizes ranging from >8.00 to 0.15 mm) were carried out to determine their effects on chemical properties, primarily crude protein (CP) and fiber contents of PKC. Based on the results from the above study, PKC that extruded with temperature profile 90/100/110℃ and of sieved size between 1.5 to 0.15 mm (which made up of near 60% of total samples) were used to determine treatments effect on AME and CP and amino acid digestibility. The second stage experiment was conducted using 64 male Cobb 500 chickens randomly assigned to 16 cages (4 cages [or replicates] per treatment) to the following four dietary groups: i) basal (control) diet, ii) basal diet containing 20% untreated PKC, iii) basal diet containing 20% extruded PKC (EPKC), and iv) basal diet containing 20% sieved PKC (SPKC). Results: Extrusion and sieving had no effect on CP and ash contents of PKC, however, both treatments reduced (p<0.05) crude fiber by 21% and 19%, respectively. Overall, extrusion and sieving reduced content of most of the amino acids except for aspartate, glutamate, alanine and lysine which increased, while serine, cysteine and tryptophan remained unchanged. Extrusion resulted in 6% increase (p<0.05) in AME and enhanced CP digestibility (p<0.05) by 32%, as compared to the untreated PKC while sieving had no effect on AME but improved CP digestibility by 39% which was not significantly different from that by extrusion. Conclusion: Extrusion is more effective than sieving and serves as a practical method to enhance AME and digestibility of CP and several amino acids in broiler chickens.

Molecular Dynamics Simulation Study for Ionic Strength Dependence of RNA-host factor Interaction in Staphylococcus aureus Hfq

  • Lazar, Prettina;Lee, Yun-O;Kim, Song-Mi;Chandrasekaran, Meganathan;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1519-1526
    • /
    • 2010
  • The behavior of peptide or protein solutes in saline aqueous solution is a fundamental topic in physical chemistry. Addition of ions can strongly alter the thermodynamic and physical properties of peptide molecules in solution. In order to study the effects of added ionic salts on protein conformation and dynamics, we have used the molecular dynamics (MD) simulations to investigate the behavior of Staphylococcus aureus Hfq protein under two different ionic concentrations: 0.1 M NaCl and 1.0 M NaCl in presence and absence of RNA (a hepta-oligoribonucleotide AU5G). Hfq, a global regulator of gene expression is highly conserved and abundant RNA-binding protein. It is already reported that in vivo the increase of ionic strength results in a drastic reduction of Hfq affinity for $Q{\beta}$ RNA and reduces the tendency of aggregation of Escherichia coli host factor hexamers. Our results revealed the crucial role of 0.1 M NaCl Hfq system on the bases with strong hydrogen bonding interactions and by stabilizing the aromatic stacking of Tyr42 residue of the adjacent subunits/monomers with the adenine and uridine nucleobases. An increase in RNA pore diameter and weakened compactness of the Hfq-RNA complex was clearly observed in 1.0 M NaCl Hfq system with bound RNA. Aggregation of monomers in Hfq and the interaction of Hfq with RNA are greatly affected due to the presence of high ionic strength. Higher the ionic concentration, weaker is the aggregation and interaction. Our results were compatible with the experimental data and this is the first theoretical report for the experimental study done in 1980 by Uhlenbeck group for the present system.

Changes in Physicochemical Properties of Korean Rice Cake Subjected to Microwave-Drying (마이크로파 건조 방법에 따른 흰떡의 이화학적 특성변화)

  • Im, Ji-Soon;Park, Kwang-Jang;Kum, Jun-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.631-637
    • /
    • 1999
  • An investigation was carried out to study the effects of aging time, storage temperature, and drying type on the physical, chemical and sensory properties of Korean rice cake. Water content and cooking properties were significantly influenced by aging time and storage temperature. However, aging time did not affect the soup turbidity. Difference in water content was noticeable by drying type. The microwave treated rice cake (MW) showed a higher water content than the other ones. The lightness (L-value) was not affected by the aging time and drying type. Rice cake storaged at 4oC showed the highest L-value. The textural properties of rice cake were influenced by the all sources of variables. There was a significant difference in hardness between microwave and hot air treated rice cake (MWH), and microwave and vacuum treated rice cake (MWV). In the sensory properties, mean intensities of all attributes except chewiness were significantly different among drying types. The MWV showed a higher acceptability than the MW and the MWH. Scanning electron photomicrographs revealed that the MWV has more porous structure. The MWV was the most desirable one as determined by the physical, chemical and sensory evaluation.

  • PDF

The Effects of Pretreatment and Surfactants on CNT and Permalloy Composite Electroplating (전처리와 분산제가 CNT-permalloy 복합전기도금에 미치는 영향 연구)

  • Um, Ho-Kyung;Lee, Heung-Yeol;Yim, Tai-Hong;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.63-68
    • /
    • 2010
  • CNT and permalloy composite plating was investigated. CNTs were pretreated prior to electroplating to disassemble the tangled CNT lumps. The ball milling as a physical pretreatment and the acid treatment as a chemical pretreatment were used. 10M nitric acid and 10 M sulfuric acid were used for the chemical pretreatment. Sulfuric acid was more effective than nitric acid to disassemble CNT lumps. To disperse CNT in the solution, surfactants were used. SDS, Triton X-100 and PAA were used for this purpose. More CNTs were incorporated in permalloy coating when PAA was used as a surfactant. The surface morphologies were observed with FESEM after electroplating CNT and permalloy. The current densities were varied from 10 to $80\;mA/cm^2$ and the concentration of PAA was fixed at 2 g/L. The optimum current density without surface cracks was $20\;mA/cm^2$. The crystallinity of the deposit was analyzed with XRD and the surface hardness was analyzed with Vicker's hardness tester. The corrosion behavior was analyzed with polarization plot. The physical properties of permalloy were not improved with CNT composite plating.

Effect of Thermal History on the Physical Properties of Nylon66 (열 이력이 나일론66의 물성에 미치는 영향)

  • Lee, Bom Yi;Jo, Chan Woo;Shim, Chang Up;Lim, Su Jung;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • Nylon66 extrudates as a function of the extrusion number were prepared by a twin screw extruder. Chemical structures, thermal properties, melt index, crystal structures, mechanical properties such as the tensile strength, elongation at break and impact strength, and rheological property were measured by FT-IR, $^1H$-NMR, melt indexer, DSC, TGA, XRD, universal tensile tester, Izod impact tester, and rheometer. FT-IR and $^1H$-NMR characterizations indicated that the number of extrusions did not affect the chemical structure. The decrease in the molecular weight was checked by the melt index of extrudates. There were no effects of the thermal history on the melting and degradation temperature. The tensile and impact strength and modulus were found to be similar, regardless of the number of extrusions, but the elongation decreased significantly. The complex viscosity of extrudates at low frequencies decreased with the extrusion number. No structural changes after extrusion were confirmed from the fact that there was no change in the slope and shape of G'-G" plot.

Physical and Chemical Properties of Coal Fly Ash Ball Substrates, the Salt Accumulation and the Effects of Washing Out Salt with Water (석탄회성형배지(Ash Ball)의 이화학적 특성과 염류집적 및 제거효과)

  • Li, Xian-Ri
    • Journal of Bio-Environment Control
    • /
    • v.10 no.2
    • /
    • pp.88-94
    • /
    • 2001
  • Physical and chemical properties, the salt accumulation and leaching of salt by water of coal fly ash ball (ash ball) were evaluated in comparison with perlite and granule rockwool (rockwool). Bulk density, particle density, solid phase, and porosity of ash ball were 0.93 g.cm$^{-3}$ , 2.29 g.cm$^{-3}$ , 40.6%, 59.4%, respectively. The bulk density of ash ball was greater, while porosity was smaller, than that of perlite and rockwool. Saturation moisture capacity was 52% in ash ball, 71% in perlite, and 90% in rockwool. Water contents after drainage for 1 hr of ash ball, perlite, and rockwool were 21%, 27%, and 80%, respectively. Water content of small granules (3-5 mm) of ash ball was 5% greater than that of large (7-15 mm) grannules. The ash ball was a weak alkali substrate with pH 7.6, but not electric conductivity (EC), of the nutrient solution supplied to ash ball slightly increased. When the absorption of mineral ions to substrates were analyzed, ash ball and RW absorbed mainly PO ̄$_4$. On tomato culture, salt accumulation in ash ball substrate was similar to that in perlite. Most of the salts in the ash balls were removed by submerging the substrate eight times in distilled water. It is concluded that water holding capacity of ash ball substrate was lo as compared to other substrates, but air permeability, and water diffusion was excellent, making control of medium water content easy.

  • PDF

Physico-Chemical Characteristics Evaluation of White Pork Rind and Black Pork Rind (백돈피와 흑돈피의 이화학적 품질특성 평가)

  • Jeon, Ki-Hong;Hwang, Yoon-Seon;Kim, Young-Boong;Choi, Yun-Sang;Kim, Byoung-Mok;Kim, Dong-Wook;Jang, Aera
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.4
    • /
    • pp.544-550
    • /
    • 2015
  • In order to determine the material characteristics of pork rinds according to the breeds, the chemical composition, color, pH, collagen contents, shear force, fatty acid and amino acid contents of pork rinds were investigated. White pork rinds (WPR) and black pork rinds (BPR) were evaluated before and after heating to compare the differences between breeds and the effects of heating treatment. In the chemical composition test, the respective moisture contents for WPR and BPR before heating were 49.90% and 53.75% but increased to 60.75% and 61.09% after heating. The test for crude protein and crude fat contents showed lower values after heating but WPR was higher than BPR. In the color test, the L value decreased rapidly with heating, dropping from 68.75 to 45.11 in WPR and from 67.22 to 49.64 in BPR. WPR had a higher L value and a lower a value than BPR before heating but had a higher L value and a lower a value than WPR after heating. pH was significantly higher in WPR than BPR regardless of heating (p<0.05). The collagen content for WPR and BPR was 10.38 g/100 g and 11.54 g/100 g but increased to 12.00 g/100 g in WPR and decreased to 11.40 g/100 g in BPR after heating. The shear force of 26.14 kgf in WPR was significantly higher than 12.89 kgf in BPR before heating (p<0.05), but the values decreased significantly after heating in both WPR and BPR. Linoleic acid in WPR was 17.29%, which was higher than 15.13% in BPR. The USFA for BPR was also higher than WPR. In amino acid composition, the EAA contents in WPR was 7,190 mg%, which was higher than 5,520 mg% in BPR.

Effects of Forest Environmental Changes on Soil Characteristics by Forest Fire (산화에 의한 산림환경변화가 토양의 특성에 미치는 영향)

  • Nam, Yi;Min, Ell-Sik;Chang, Kwan-Soon;Park, Kwan-Soo;Lee, Yoon-Won
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.61-70
    • /
    • 1998
  • This research has been made for influence of forest environmental changes, such as tree-clearcutting affecting to soil chemical and physical properties, on water storage capacity at forest fire land in Keumsan, Chungnam. The analyzed factors were bulk density, porosity, field moisture saturated hydraulic conductivity air permeability and organic matter content, Field moisture saturated hydraulic conductivity and air permeability at uncutting sites were higher than those at clearcutting sites, especially the most differences were appeared at lower slope. After 2 years passed since forest fire, the most changeable parts of soil characteristics were 5-l5cm depth below soil surface. Total Porosity, coarse pore and fine pore at uncutting sites were higher than those at clearcutting sites. Also, as soil depth increased, total porosity and coarse pore were decreased. Bulk density at uncutting sites was lower than that at clearcutting sites, and was decreased as soil depth increased. The order of the change trend in field moisture saturated hydraulic conductivity, air permeability and porosity was slope lower>middle>upper. Organic matter content at uncutting sites were higher than those at clearcutting sites, and decreased as soil depth increased. As soil depth increased, bulk density had the positive correlation, in other hand, porosity, coarse pore, field moisture saturated hydraulic conductivity, air permeability and organic matter content had the negative correlation. It was concluded that forest environmental changes by forest fire degrade soil physical and chemical properties.

  • PDF

Effects of Pre-Sintering Surface Treatment and Liner Application on the Shear Bond Strength of Zirconia and Pressable Ceramic (소결 전 지르코니아 표면처리와 라이너 사용에 따른 지르코니아와 열가압성형도재의 전단결합강도)

  • Lee, Gwang-Young;Cho, Mi-Hyang;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.37 no.3
    • /
    • pp.121-127
    • /
    • 2015
  • Purpose: This study was intended to investigate the effect of applying liner for chemical bonding and physical surface roughness created on zirconia by using a sandpaper before sintering on the bond strength between the two materials. Methods: Zirconia blocks were cut using a low-speed cutter. Plate-shaped specimen($6mm{\times}6mm{\times}3mm$) was fabricated by sintering after giving surface roughness according to four kinds of sandpapers. Depending on whether or not to use liner, 60 specimens were divided into two groups ZN(non-liner), ZL(liner), and the two groups were subdivided into four groups respectively in accordance with sandpaper used, totaling eight groups (n=10). The surface roughness (Ra) values and shapes before sintering were observed, and shear bond strength after pressing ceramic plasticity was measured with a universal testing machine. For a test of the significance, a one-way ANOVA was performed, and Tukey's multiple comparison test was conducted. Results: The observation of the surface roughness was SB04($2.22{\pm}1.16{\mu}m$), SB08($2.98{\pm}0.33{\mu}m$), SB12($2.44{\pm}1.32{\mu}m$), SB20($2.34{\pm}0.59{\mu}m$) and SA04($2.34{\pm}0.67{\mu}m$), SA08($1.28{\pm}0.90{\mu}m$), SA12($2.03{\pm}1.60{\mu}m$), SA20($2.19{\pm}1.73{\mu}m$). In the case of ZN Group, the shear bond strength was ZN04($23.26{\pm}3.83MPa$), ZN08($21.76{\pm}2.33MPa$), ZN12($20.49{\pm}3.01MPa$), ZN20($24.98{\pm}4.22MPa$)(p<0.05). As for ZL Group, the shear bond strength was ZL04($25.09{\pm}5.67MPa$), ZL08($22.98{\pm}2.26MPa$), ZL12($21.54{\pm}5.70MPa$), ZL20($23.98{\pm}3.23MPa$)(p<0.05). Conclusion: The research results showed that the bond strength of Zirconia core and Pressing ceramic was further improved by physical surface treatment before sintering, rather than by chemical bonding through liner surface treatment.

Survival of Microorganisms on Antimicrobial Filters and the Removal Efficiency of Bioaerosols in an Environmental Chamber

  • Kim, Sung Yeon;Kim, Misoon;Lee, Sunghee;Lee, JungEun;Ko, GwangPyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1288-1295
    • /
    • 2012
  • Exposure to bioaerosols causes various adverse health effects including infectious and respiratory diseases, and hypersensitivity. Controlling exposure to bioaerosols is important for disease control and prevention. In this study, we evaluated the efficacies of various functional filters coated with antimicrobial chemicals in deactivating representative microorganisms on filters or as bioaerosols. Tested functional filters were coated with different chemicals that included (i) Ginkgo and sumac, (ii) Ag-apatite and guanidine phosphate, (iii) $SiO_2$, ZnO, and $Al_2O_3$, and (iv) zeolite. To evaluate the filters, we used a model ventilation system (1) to evaluate the removal efficiency of bacteria (Escherichia coli and Legionella pneumophila), bacterial spores (Bacillus subtilis spore), and viruses (MS2 bacteriophage) on various functional filters, and (2) to characterize the removal efficiency of these bioaerosols. All experiments were performed at a constant temperature of $25^{\circ}C$ and humidity of 50%. Most bacteria (excluding B. subtilis) rapidly decreased on the functional filter. Therefore, we confirmed that functional filters have antimicrobial effects. Additionally, we evaluated the removal efficiency of various bioaerosols by these filters. We used a six-jet collision nebulizer to generate microbial aerosols and introduced it into the environmental chamber. We then measured the removal efficiency of functional filters with and without a medium-efficiency filter. Most bioaerosol concentrations did not significantly decrease by the functional filter only but decreased by a combination of functional and medium-efficiency filter. In conclusion, functional filters could facilitate biological removal of various bioaerosols, but physical removal of these by functional was minimal. Proper use of chemical-coated filter materials could reduce exposure to these agents.