Changes in Physicochemical Properties of Korean Rice Cake Subjected to Microwave-Drying

Ji-Soon Im, Kwang-Jang Park* and Jun-Seok Kum*
Department of Food Science and Technology, Konyang University
*Korea Food Research Institute

Abstract

An investigation was carried out to study the effects of aging time, storage temperature, and drying type on the physical, chemical, and sensory properties of Korean rice cake. Water content and cooking properties were significantly influenced by aging time and storage temperature. However, aging time did not affect the soup turbidity. Difference in water content was noticeable by drying type. The microwave treated rice cake (MW) showed a higher water content than the other ones. The lightness (L-value) was not affected by the aging time and drying type. Rice cake stored at 40°C showed the highest L-value. The textural properties of rice cake were influenced by the all sources of variables. There was a significant difference in hardness between microwave and hot air treated rice cake (MHW), and microwave and vacuum treated rice cake (MWV). In the sensory properties, mean intensities of all attributes except chewiness were significantly different among drying types. The MWV showed a higher acceptability than the MW and the MWH. Scanning electron photomicrographs revealed that the MWV has a more porous structure. The MWV was the most desirable one as determined by the physical, chemical and sensory evaluation.

Key words: microwave, drying, rice cake

서 론

건조는 고형분말의 수분을 기체상태로 제거하는 작으로 가장 오래된 식품저장법이다. 식품을 건조하는 목적은 식품내 수분을 감소시켜 보존성과 유통성을 향상시키기 위한 것이다. 식품의 건조 공정에는 건조 속도가 매우 중요하게 작용한다. 건조 속도는 부여된 건조 조건에 비해하는데 건조 속도를 증진시키기 위하여 많은 열량과 급격한 온도 증가가 요구하게 된다. 또한 열 전달이 내부까지 이루어질 경우 또는 어떤 수준으로 전달되지 않아 문제가 되며 이는 건조도와 많은 관계가 있다. 그러므로 기존의 건조 공정에서 식품의 표면 온도가 증가하게 되면 열에 의한 손상을 피할 수 없게 된다. 즉 열 전도율이 낮은 식품들은 건조 공정에서 매우 긴 시간이 요구되므로 실질적인 면에서 많은 문제 점이 제기되고 있다. 식품은 일반적으로 전해체에 가깝기에 때문에 건조가열 방식이 적합하며 마이크로파를 이용하면 열효율이 높아져서 짜는 시간 내에도 간편하게 건조시킬 수 있다. 따라서 본 연구에서는 국내 맛의 생산의 대부분을 차지하고 있는 백국용 품질의 품질을 향상시키기 위해 소비자의 기호에 부응할 수 있게 하기 위해서 마이크로파를 이용하여 단시간 내에 가열할 수 있는 방법을 개발하고 진조 후의 이화학적인 특성 검토하였다.

재료 및 방법

실험재료 및 제조방법
본 실험에 사용된 백설은 시중에서 일반적으로 구입하여 사용하였으며 가래떡의 제조공정은 원료 백설을 세척하여 8시간 동안 수厳한 후 발효하여 분쇄하고
30분간 충숙하였다. 성형된 가래액은 전처리로 4시간 혹은 24시간 실온에서 방치시킨 후 전공 소포장하여각각 냉동(-20°C), 냉장(4°C), 상온(25°C) 저장하면서 실험에 사용하였다. 시료는 5mm 두께로 일정하게 절단하여 사용하였으며 전조용법은 마이크로컬리어(MW), 마이크로파와 염물(50°C)의 병합처리(MWH), 마이크로파와 진공(500mmHg)의 병합처리(MVH)로 세포를 전조하였다. 마그네트론의 각도는 5분 전조 후 1분 정지(5분 power on, 1분 power off)를 반복하는 방법으로처리하였다. 이 때 마이크로파 전조기의 출력과 주파수는 각각 100 Watt, 2450MHz로서 자체 제작한 마이크로파 전조기를 이용하였다.

수분함량

영역의 수분함량 측정은 상압가열건조법으로 105°C 건조기에서 12시간 건조하여 수분을 완전히 제거한 후 무게를 측정하여 수분함량을 계산하였다.

조리특성

영역의 조리 특성 시험에서는 조리 후 영역의 수분흡수율, 고영용용충량 및 영국 국물의 혼탁도 등을 측정하였다. 수분흡수율은 영역 100g을 5배 중량의 물에 넣은 물에서 30초 동안 가열한 후 체로 걸려내어 먹모양의 물기를 제거한 다음 무게를 측정하였으며, 이 때 먹을 끓인 물 50ml를 설정에 넣기에 담아 105°C 건조기에서 12시간 건조하여 수분을 완전히 제거한 후 무게를 측정하여 고영용용충량을 측정하였다. 영국 국물의 혼탁도는 먹을 물에 대한 580nm에서의 광물도를 측정하여 결정하였다.

색도 측정

영역의 처리구별 색도 측정은 색차계(color and color difference meter, CR0200, Minolta Co., Japan)를 사용하여 명암도를 L값, 톤색도를 a값, 광색도를 b값으로 측정하였다. 처리구별로 제조한 시료의 표면색갈은 3회 반복 측정하여 평균치로 나타내었다.

텍스쳐 측정

전조된 영역의 텍스쳐 측정은 끓는 물에서 30초 동안 조리한 후 체로 걸려내어 먹모양의 물기를 제거한 다음 조직감 측정기(texture analyser, Model XT2, Stable Micro Systems Co., England)를 사용하여 2단 압착시험(two-cycle compression test)으로 측정하였다. 이 때 측정조건은 probe: 10 mm, graph type: force vs time, force threshold; 20 g, distance threshold: 0.5mm, test speed; 5.0 mm/s, strain; 50%이었다. 이 때 측정항목으로는 경도와 부착성, 탄력성, 응집성, 염성을 측정하였다.

미세구조 관찰

처리구별 전조된 미세구조의 변화를 알아보기 위하여 gold-palladium으로 코팅(coating)하여 주사전자현미경(scanning electron microscope, Topcon Sx-30E, Japan)에 시험하여 미세구조를 관찰한 후 100배로 확대하여 전압 15KV에서 각각 샷각 부위를 촬영하였다.

관능검사

영역에 대한 관능적 품질평가는 색상, 경도, 조익성, 응집성, 전반적 기호성을 특성항목으로 하여 9점 척도법으로 측정하였으며 점수가 높음수록 특성이 강해지기 때문에 나타내도록 하였다. 관능검사는 영국을 선호하는 식품공학과 학생 12명을 선정하여 실험의 취지에 알인시간 후 실시하였으며, 시료의 준비는 영역 중광비 5배로 물을 가하여 30초간 가열한 후에 제공하였다. 실험결과는 SAS를 이용하여 분산분석과 최소 유의차본식으로 유의성을 검정하였다.

결과 및 고찰

건조전후의 수분변화

적령의 전처리 조건에 따른 마이크로파 건조전후의 수분함량 변화는 Table 1과 같다. 숙성시간은 적령의 건조 후 수분함량에 크게 영향을 미쳤으며(p<0.001), 예상대로 24시간 수분을 가열한 것이 4시간 수분을 가열한 보다 전조후의 수분함량이 낮게 나타났다. 저장온도에 따라서 시료간 차이가 나타나지 않았지만, 건조방법과 따라서는 유의차(p<0.05)가 나타났다. 마이크로파에 염증을 반영한 처리구와 마이크로파에 진공을 반영한 처리구간에는 수분함량 차이가 없었으며, 마이크로파 단독으로 처리한 시료의 수분 함량이 가장 높은 값을 보였다. 이는 적령의 전조방법이 단일 시간당 수분 증발속도에 크게 영향을 준 것으로 사료된다.

적령의 조리특성

전조된 적령의 조리특성을 알아보기 위하여 조리후 적령의 고영용용용충량, 중량변화, 영국 국물의 혼탁도 등을 측정한 결과는 Table 2와 같다. 조리조건은 먹과 물의 비율은 15로 하였으며 30초간 가열한 후 측정하였다. 숙성시간은 적령의 수분흡수율에 크게 영향을 미쳤으며(p<0.01), 24시간 숙성처리구가 4시간 처리구
<table>
<thead>
<tr>
<th>Source of variables</th>
<th>Water content of rice cake (%H₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>After Pretreatment</td>
</tr>
<tr>
<td>Aging Time</td>
<td></td>
</tr>
<tr>
<td>4 hr</td>
<td>46.94a³</td>
</tr>
<tr>
<td>24 hr</td>
<td>41.99b</td>
</tr>
<tr>
<td>LSD</td>
<td>0.2973</td>
</tr>
<tr>
<td>F values</td>
<td>1133.1**³⁴</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td></td>
</tr>
<tr>
<td>-20°C</td>
<td>44.27b</td>
</tr>
<tr>
<td>4°C</td>
<td>44.67a</td>
</tr>
<tr>
<td>25°C</td>
<td>44.46ab</td>
</tr>
<tr>
<td>LSD</td>
<td>0.3641</td>
</tr>
<tr>
<td>F values</td>
<td>2.51</td>
</tr>
<tr>
<td>Drying Type</td>
<td></td>
</tr>
<tr>
<td>MW⁵</td>
<td>44.25b</td>
</tr>
<tr>
<td>MWH</td>
<td>44.43ab</td>
</tr>
<tr>
<td>MWV</td>
<td>44.72a</td>
</tr>
<tr>
<td>LSD</td>
<td>0.3641</td>
</tr>
<tr>
<td>F values</td>
<td>3.48*</td>
</tr>
<tr>
<td>Replication</td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>44.57a</td>
</tr>
<tr>
<td>2nd</td>
<td>44.49a</td>
</tr>
<tr>
<td>3rd</td>
<td>44.33a</td>
</tr>
<tr>
<td>LSD</td>
<td>0.3641</td>
</tr>
<tr>
<td>F values</td>
<td>0.93</td>
</tr>
</tbody>
</table>

1Mean scores in column within variables followed by the same letter are not significantly different at the p<0.05 level using Least Significant Difference test.
2**, ***: Significantly different at p<0.05, p<0.01, p<0.001 in ANOVA test.
3MW: microwave treated rice cake, MWH: microwave and hot air treated rice cake, MWV: microwave and vacuum treated rice cake.

보다 수분흡수율이 높게 나타났다. 고온방 육출량은 수상시간에 따라 높은 유의차를 보였지만(p<0.001), 국물의 혼탁도는 수상시간에 따른 차이가 나타나지 않았다. 저장온도에 따라서는 낭장저장시 수분흡수율과 고온방육출량이 가장 높았으며 낭장저장과 상온저장간에는 유의차가 나타나지 않았다. 반면에 광부포도로 측정한 국물의 혼탁도는 낭장저장 혼탁도가 53%로 가장 높았으며, 낭장저장 48.6%, 상온저장 47.9% 순으로 나타났다. 진조방법에 따라 고온방 육출량 및 국물의 혼탁도는 통계적인 유의성이 나타나지(p>0.05), 수분 흡수율에서는 유의차가 나타나지 않았다. 마이크로파 처리한 시료가 고온방 육출량 및 국물의 혼탁도에서 가장 낮은 값을 보였으며, 마이크로파에 열을 병행한 처리구와 마이크로파에 열을 병행한 처리구간에 차이가 없었다. 이는 혼탁의 진조방법에 따른 다공질 구조의 변화에 기인한 것으로 사료된다.³⁴²

<table>
<thead>
<tr>
<th>Source of variables</th>
<th>Cooking properties of rice cake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water Holding Capacity (%)</td>
</tr>
<tr>
<td>Aging Time</td>
<td></td>
</tr>
<tr>
<td>4 hr</td>
<td>5.847b³</td>
</tr>
<tr>
<td>24 hr</td>
<td>6.654a</td>
</tr>
<tr>
<td>LSD</td>
<td>0.4482</td>
</tr>
<tr>
<td>F values</td>
<td>14.05**³⁴</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td></td>
</tr>
<tr>
<td>-20°C</td>
<td>6.095b</td>
</tr>
<tr>
<td>4°C</td>
<td>7.020a</td>
</tr>
<tr>
<td>25°C</td>
<td>5.637b</td>
</tr>
<tr>
<td>LSD</td>
<td>0.549</td>
</tr>
<tr>
<td>F values</td>
<td>14.25***</td>
</tr>
<tr>
<td>Drying Type</td>
<td></td>
</tr>
<tr>
<td>MW⁵</td>
<td>6.040a</td>
</tr>
<tr>
<td>MWH</td>
<td>6.493a</td>
</tr>
<tr>
<td>MWV</td>
<td>6.218a</td>
</tr>
<tr>
<td>LSD</td>
<td>0.549</td>
</tr>
<tr>
<td>F values</td>
<td>1.50</td>
</tr>
<tr>
<td>Replication</td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>5.853b</td>
</tr>
<tr>
<td>2nd</td>
<td>6.645a</td>
</tr>
<tr>
<td>3rd</td>
<td>0.4482</td>
</tr>
<tr>
<td>LSD</td>
<td></td>
</tr>
<tr>
<td>F values</td>
<td>13.59**</td>
</tr>
</tbody>
</table>

³Mean scores in column within variables followed by the same letter are not significantly different at the p<0.05 level using Least Significant Difference test.
³**, ***: Significantly different at p<0.05, p<0.01, p<0.001 in ANOVA test.
⁵MW: microwave treated rice cake, MWH: microwave and hot air treated rice cake, MWV: microwave and vacuum treated rice cake.

색도의 변화

진조방법별로 제조한 혼탁의 색도를 측정한 결과는 Table 3과 같다. 밝은 정도를 나타내는 L (lightness) 값은 저장온도에 따라 유의차가 있었으며(p<0.001), 낭장저장 시료가 가장 밝은 색도를 나타내었고 낭장저장 시료와 상온저장 시료간에는 유의차가 없었다. 수상시간이나 진조방법에 따른 명암도의 차이가 없었다. 붉은 색도를 나타내는 a (redness) 값은 수상시간, 저장온도 및 진조방법 모두 유의적인 차이가(p<0.001) 크게 나타났다. 수상시간이 길수록 높은 값을 나타내었고, 역시 낭장저장 혼탁도가 가장 높은 값을 나타내었다. 또한 진조방법에 있어서 마이크로파와 열을 병행한 진조방법이 혼탁도의 적색도 값을 가장 낮게했 다. 노란색도를 나타내는 b (yellowness) 값은 24시간 수상, 낭장저장 및 마이크로파 진조 시료가 가장 높은 값을 나타내었다. 실제 판별감각시에 있어서도 각 차
<table>
<thead>
<tr>
<th>Source of variables</th>
<th>After Pretreatment</th>
<th>After Drying</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>a</td>
</tr>
<tr>
<td>Aging Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 hr</td>
<td>72.69a</td>
<td>-1.597b</td>
</tr>
<tr>
<td>24 hr</td>
<td>72.32a</td>
<td>-1.524a</td>
</tr>
<tr>
<td>LSD</td>
<td>0.699</td>
<td>0.055</td>
</tr>
<tr>
<td>F values</td>
<td>1.12</td>
<td>7.10*</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-20°C</td>
<td>72.58ab</td>
<td>-1.632b</td>
</tr>
<tr>
<td>4°C</td>
<td>72.98a</td>
<td>-1.369a</td>
</tr>
<tr>
<td>25°C</td>
<td>71.97b</td>
<td>-1.680b</td>
</tr>
<tr>
<td>LSD</td>
<td>0.857</td>
<td>0.068</td>
</tr>
<tr>
<td>F values</td>
<td>2.86</td>
<td>50.16***</td>
</tr>
<tr>
<td>Drying Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td>73.35a</td>
<td>-1.516a</td>
</tr>
<tr>
<td>MWH</td>
<td>72.13b</td>
<td>-1.592b</td>
</tr>
<tr>
<td>MWV</td>
<td>72.04b</td>
<td>-1.573ab</td>
</tr>
<tr>
<td>LSD</td>
<td>0.857</td>
<td>0.068</td>
</tr>
<tr>
<td>F values</td>
<td>5.92**</td>
<td>2.79</td>
</tr>
<tr>
<td>Replication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>72.68a</td>
<td>-1.544a</td>
</tr>
<tr>
<td>2nd</td>
<td>72.17a</td>
<td>-1.572a</td>
</tr>
<tr>
<td>3rd</td>
<td>72.67a</td>
<td>-1.565a</td>
</tr>
<tr>
<td>LSD</td>
<td>0.857</td>
<td>0.068</td>
</tr>
<tr>
<td>F values</td>
<td>0.95</td>
<td>0.36</td>
</tr>
</tbody>
</table>

1Mean scores in column within variables followed by the same letter are not significantly different at the p<0.05 level using Least Significant Difference test.

2*, **, ***: Significantly different at p<0.05, p<0.01, p<0.001 in ANOVA test.

3MW: microwave treated rice cake, MWH: microwave and hot air treated rice cake, MWV: microwave and vacuum treated rice cake.

리구별로 제조된 환력간의 색상에 유의적 차이가 있 었다. 일반적으로 환력의 버프지한 색깔은 환력 을 토써서 연한 흰색을 내는 환력이 가장 좋다고 하는 데, 다양한 건조방법으로 인한 환력 색깔의 변화는 소 비자 기호도의 관점에서 고려해야 할 중요한 과제라 생각된다. 한편 모든 처리에 있어서 박복간에는 유의 성 차이가(p<0.05) 없었다.

조작감의 변화

미아크로파를 이용하여 전조한 환력의 조리후 조작 변화를 알아보기 위하여 채중지 측정기를 사용하여 경 도, 부착성, 낡으면성, 응집성, 전반성 등을 측정한 결과는 Table 4와 같다. 전조후 조리된 환력의 경도는 속성시간, 저장온도, 건조방법에 따라 차이를 보였으 며, 속성시간이 길 것이 단단하였고, 낡으면장 시료가 낡으면장이나 상온에 방치한 것보다 경도가 높았다.

마이크로파에 진공을 병행처리한 시료가 마이크로파 및 마이크로파에 열풍을 병행처리한 시료보다 평균 2.17배 및 1.41배 더 단단하였다. 부착성은 낡으면장한 환력이 가장 강한 것으로 나타났으며(p<0.05), 마이크로 파로 전조한 환력의 부착성이 비교적 약한 것으로 나타났다. 한편 단백성은 어떠한 처리조건에서도 유 의적인 차이를(p<0.05) 보이지 않았다. 환력의 응집성 은 속성시간에 따라 크게 차이가 나타났으나 다른 처 리조건에서는 유의적인 차이를 보이지 않았다. 한편 경성과 전반성은 각 처리간 모두 통계적 유의성이 나 타났다. 속성시간이 길 것과 낡으면장한 것 각각 가 장 높은 값을 보였으며, 건조방법에서는 마이크로파 에 열풍을 병행처리한 시료, 마이크로파에 진공을 병 행처리한 시료, 마이크로파처리 시료의 순으로 높게 나타났다. 모든 처리구에 있어서 박복간에는 유의성 차이가(p<0.05) 없었다.
<table>
<thead>
<tr>
<th>Source of variables</th>
<th>Hard (g)</th>
<th>Adhes.</th>
<th>Spring</th>
<th>Cohes.</th>
<th>Gum</th>
<th>Chew</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 hr</td>
<td>456.12b</td>
<td>-143.0</td>
<td>0.928a</td>
<td>0.604a</td>
<td>273.65b</td>
<td>253.00b</td>
</tr>
<tr>
<td>24 hr</td>
<td>1301.6a</td>
<td>-123.5a</td>
<td>0.913a</td>
<td>0.562b</td>
<td>741.56a</td>
<td>676.76a</td>
</tr>
<tr>
<td>LSD</td>
<td>136.83</td>
<td>48.781</td>
<td>0.031</td>
<td>0.0245</td>
<td>66.925</td>
<td>61.685</td>
</tr>
<tr>
<td>F values</td>
<td>165.14***</td>
<td>0.70</td>
<td>0.96</td>
<td>12.69*</td>
<td>211.40***</td>
<td>204.10***</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-20°C</td>
<td>877.4ab</td>
<td>-92.21a</td>
<td>0.926a</td>
<td>0.580a</td>
<td>494.68b</td>
<td>455.27b</td>
</tr>
<tr>
<td>4°C</td>
<td>990.74a</td>
<td>-168.9b</td>
<td>0.923a</td>
<td>0.584a</td>
<td>592.41a</td>
<td>547.25a</td>
</tr>
<tr>
<td>25°C</td>
<td>768.48b</td>
<td>-138.6ab</td>
<td>0.913a</td>
<td>0.584a</td>
<td>435.73b</td>
<td>392.12b</td>
</tr>
<tr>
<td>LSD</td>
<td>167.58</td>
<td>59.745</td>
<td>0.0388</td>
<td>0.03</td>
<td>81.967</td>
<td>75.548</td>
</tr>
<tr>
<td>F values</td>
<td>3.80*</td>
<td>3.61*</td>
<td>0.26</td>
<td>0.04</td>
<td>8.06**</td>
<td>9.22**</td>
</tr>
<tr>
<td>Drying Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW⁴</td>
<td>560.01c</td>
<td>-187.4b</td>
<td>0.9208a</td>
<td>0.5966a</td>
<td>331.07c</td>
<td>301.05c</td>
</tr>
<tr>
<td>MWH</td>
<td>862.68b</td>
<td>-94.20a</td>
<td>0.9111a</td>
<td>0.5721a</td>
<td>717.54a</td>
<td>656.93a</td>
</tr>
<tr>
<td>MWV</td>
<td>1213.9a</td>
<td>-118.1a</td>
<td>0.9300a</td>
<td>0.5797a</td>
<td>474.21b</td>
<td>436.65b</td>
</tr>
<tr>
<td>LSD</td>
<td>167.58</td>
<td>59.745</td>
<td>0.0388</td>
<td>0.03</td>
<td>81.967</td>
<td>75.548</td>
</tr>
<tr>
<td>F values</td>
<td>32.99***</td>
<td>5.68*</td>
<td>0.51</td>
<td>1.51</td>
<td>49.15***</td>
<td>48.89***</td>
</tr>
<tr>
<td>Replication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>903.74a</td>
<td>-143.5a</td>
<td>0.918a</td>
<td>0.588a</td>
<td>512.60a</td>
<td>463.62a</td>
</tr>
<tr>
<td>2nd</td>
<td>854.01a</td>
<td>-123.0a</td>
<td>0.924a</td>
<td>0.578a</td>
<td>502.61a</td>
<td>466.14a</td>
</tr>
<tr>
<td>LSD</td>
<td>136.83</td>
<td>48.781</td>
<td>0.031</td>
<td>0.0245</td>
<td>66.925</td>
<td>61.685</td>
</tr>
<tr>
<td>F values</td>
<td>0.57</td>
<td>0.76</td>
<td>0.16</td>
<td>0.73</td>
<td>0.10</td>
<td>0.01</td>
</tr>
</tbody>
</table>

1) Hardness, Adhesiveness, Springiness, Cohesiveness, Gumminess, Chewiness.
2) Mean scores in column within variables followed by the same letter are not significantly different at the p<0.05 level using Least Significant Difference test.
3*) Significant different at p<0.05, p<0.01, p<0.001 in ANOVA test.
4) MW: microwave treated rice cake, MWH: microwave and hot air treated rice cake, MWV: microwave and vacuum treated rice cake.

화덕의 미세구조 관찰

전조방법에 따른 화덕의 조직변화를 알아보기 위하여 전자현미경으로 화덕의 미세구조를 관찰하였다. 수선시간에 따라 미세구조에 차이가 확실하였으며, 24시간 수선한 것이 4시간 수선한 것보다 표면이 거칠고 부분적으로 갈라져 있는 것이 관찰되었다. 이 결과는 조직간 측정기를 이용한 기기측정 결과와도 일치하였다. 저장온도에 따라서는 큰 차이가 나타나지 않았지만 냉동저장으로 인하여 표면에 출수구조가 나타나서 대체로 매끄럽지 못한 표면부위를 보여주었다. 냉동저장 방사사하여 표면구조가 크게 다르게 나타났다. 마이크로파 처리구는 표면구조가 부드럽지 못하고 조직이 매끄럽지 못함을 보여주었으며, 마이크로파에 열응을 병행한 처리구도 조직이 고르지 못함을 보여주었다. 마이크로파에 진공을 병행한 처리구가 표면이 매우 부드럽고 기공이 균일하게 분포된 다공성 구조(Fig. 1)를 형성하고 있었다. 이는 전조방법에 따른 화덕의 조직학적 특성과 조직변화가 미세구조의 차이에서 기인할 수 있다는 사실을 나타내는 결과라고 평가된다(13).

화덕의 관능검사

판능검사를 통한 전조 화덕의 차이를 알아보기 위하여 LSD검정을 행한 결과는 Table 5와 같다. 수선시간 동안 화덕의 관능적 특성에 가장 크게 영향을 미쳤으나, 24시간 수선한 것이 4시간 처리한 것보다 강한 경도를 나타냈다. 이 결과는 조직간 측정기를 이용한 기기측정 결과와 일치하였다. 색상, 톤특성, 짠함성, 전반적인 기호도 역시 각각 수선시간에 따라 유의적인 차이를 보였으며, 이들 관능특성치들은 24시간 수선시간보다 4시간 수선시 높은 점수를 나타냈다. 저장온도에 따라서는 냉동저장이 색상과 흡미성에서 가장 적응

Translated from Korean to English.
Fig. 1. Scanning electron micrographs (SEM) of rice cake prepared with various drying methods. A: microwave treated rice cake, B: microwave and hot air treated rice cake, C: microwave and vacuum treated rice cake

Table 5. Analysis of variance, mean intensity and LSD values for sensory evaluation of rice cake prepared with various drying methods

<table>
<thead>
<tr>
<th>Source of variables</th>
<th>Color</th>
<th>Sensory characteristics<sup>1</sup></th>
<th>Hard</th>
<th>Spring</th>
<th>Chew</th>
<th>Accept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 hr</td>
<td>6.704a<sup>2</sup></td>
<td>4.099b</td>
<td>6.432a</td>
<td>6.506a</td>
<td>6.580a</td>
<td></td>
</tr>
<tr>
<td>24 hr</td>
<td>6.000b</td>
<td>5.988a</td>
<td>5.099b</td>
<td>4.469b</td>
<td>4.790b</td>
<td></td>
</tr>
<tr>
<td>LSD</td>
<td>0.327</td>
<td>0.434</td>
<td>0.512</td>
<td>0.463</td>
<td>0.386</td>
<td></td>
</tr>
<tr>
<td>F values</td>
<td>18.11***<sup>3</sup></td>
<td>74.21***</td>
<td>26.51***</td>
<td>75.75***</td>
<td>83.97***</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-20°C</td>
<td>5.852b</td>
<td>5.296a</td>
<td>5.463a</td>
<td>4.907b</td>
<td>5.926a</td>
<td></td>
</tr>
<tr>
<td>4°C</td>
<td>6.407a</td>
<td>5.000a</td>
<td>5.944a</td>
<td>5.741a</td>
<td>5.611a</td>
<td></td>
</tr>
<tr>
<td>25°C</td>
<td>6.796a</td>
<td>4.833a</td>
<td>5.889a</td>
<td>5.815a</td>
<td>5.519a</td>
<td></td>
</tr>
<tr>
<td>LSD</td>
<td>0.400</td>
<td>0.531</td>
<td>0.627</td>
<td>0.567</td>
<td>0.473</td>
<td></td>
</tr>
<tr>
<td>F values</td>
<td>10.99***</td>
<td>1.52</td>
<td>1.38</td>
<td>6.18**</td>
<td>1.59</td>
<td></td>
</tr>
<tr>
<td>Drying Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW<sup>4</sup></td>
<td>6.685a</td>
<td>4.593b</td>
<td>5.500b</td>
<td>5.519a</td>
<td>5.630b</td>
<td></td>
</tr>
<tr>
<td>MWH</td>
<td>6.000b</td>
<td>5.556a</td>
<td>5.389b</td>
<td>5.296a</td>
<td>5.130c</td>
<td></td>
</tr>
<tr>
<td>MWV</td>
<td>6.370ab</td>
<td>4.981b</td>
<td>6.407a</td>
<td>5.648a</td>
<td>6.296a</td>
<td></td>
</tr>
<tr>
<td>LSD</td>
<td>0.400</td>
<td>0.531</td>
<td>0.627</td>
<td>0.567</td>
<td>0.473</td>
<td></td>
</tr>
<tr>
<td>F values</td>
<td>5.74**</td>
<td>6.51**</td>
<td>6.21**</td>
<td>0.77</td>
<td>11.97***</td>
<td></td>
</tr>
</tbody>
</table>

¹Hard: Hardness, Spring: Springiness, Chew: Chewiness, Accept: Acceptability.
²Mean scores in column within variables followed by the same letter are not significantly different at the p<0.05 level using Least Significant Difference test.
³*, **, ***: Significantly different at p<0.05, p<0.01, p<0.001 in ANOVA test.
⁴MW: microwave treated rice cake, MWH: microwave and hot air treated rice cake, MWV: microwave and vacuum treated rice cake.

색상과 낮은 셀프성을 보여주었으며, 명장지장과 상온 저장간에는 차이가 나타나지 않았다. 그 외의 경우, 콩 특성, 전반적인 기호도에서는 저장온도에 따른 유의성 을(p>0.05) 나타나지 않았다. 건조방법에 따라서는 셀프성을 제외한 관능특성치들에서 통계적 유의성이 나타났다. 색상에 있어서는 마이크로파에 열풍을 병행한 처리구가, 콩특 성과 전반적 기호도에 있어서는 마이크로파에 진공을 병행한 처리구가 가장 높은 점수를 받았다. 이 결과를 종합적으로 셀프성, 콩특성, 셀프성 및 전반적 기호도 등 종합적 인 측면에서 볼 때 마이크로파와 진공을 병행한 건 조방법이 가장 우수함을 나타내었다.
요 약

游戏装备의 품질특성 시험의 일관으로 다양한 건조방법별로 품액을 제조하여 이화학적 특성을 조사 하였다. 숙성시간은 품액의 수분함량, 수분흡수율과 고형분 용융량에 크게 영향을 미쳤지만, 국물을 혼탁 도는 유의적인 차이가 나타나지 않았다. 저장온도에 따라서는 납장저항시 수분흡수율과 고형분용융량이 가장 높았으며 납장저항과 상온저항간에는 유의차가 나타나지 않았다. 마이크로파 처리한 시료가 고형분 용융량 및 국물의 혼탁도에서 가장 낮은 값을 보였으 나 수분함량은 가장 높았다. 납장저항시 시료의 가장 낮은 색도를 나타냈고 납장저항 시료와 상온저항 시료간에는 유의차가 없었다. 숙성시간이나 건조방법에 따른 명암도의 차이가 없었다. 전조후 조리된 품액의 조직감은 숙성시간, 저장온도, 건조방법에 따라 차이 를 보였으며, 숙성시간이 길 것이 조직이 단단하였고 납장저항 시료가 납장저항이나 상온에 방치한 것보다 정도가 높았다. 마이크로파를 사용한 시료가 마이크로파 및 마이크로파에 열증을 병행처리한 시료보다 정도가 높았다. 숙성시간은 품액의 관능적 특성에 크게 영향을 미쳤지만, 저장온도에 따라서는 정도, 존중성, 기호도에서 유의성이 나타나지 않았다.

건조방법에 따라서는 경제화를 제외한 모든 특성에서 유의적인 차이가 나타났다. 미래주료에서는 마이 크로파와 진공을 병행한 건조 방법의 표면을 메끄럽 게 하면서 기름이 균일한 다공성 구조를 형성하였다. 관능적 특성 및 관능적 기호도 중 종합적인 점에서 높게 진공 및 마이크로파를 병행한 건조 방법이 가장 우수함을 나타내었다.

감사의 글

본 연구 농림기술개발연구과제(현장예제)에 의하여 수행된 연구결과의 일부로서, 연구비 지원에 감사드립니다. 수행에 많은 도움을 주신 전양대학교 김상현교수

한국식품개발연구원 이창호박사에게 감사의 드립니다.

문헌

(1998년 11월 11일 접수)