The Effects of Pretreatment and Surfactants on CNT and Permalloy Composite Electroplating

전처리와 분산제가 CNT-permalloy 복합전기도금에 미치는 영향 연구

  • Um, Ho-Kyung (Dept. of Materials Science and Engineering, Hongik University) ;
  • Lee, Heung-Yeol (Div. of Prod. Tech., Korea Institute of Industrial Technology) ;
  • Yim, Tai-Hong (Div. of Prod. Tech., Korea Institute of Industrial Technology) ;
  • Lee, Jae-Ho (Dept. of Materials Science and Engineering, Hongik University)
  • 엄호경 (홍익대학교 신소재공학과) ;
  • 이흥렬 (한국생산기술연구원 생산기반연구본부) ;
  • 임태홍 (한국생산기술연구원 생산기반연구본부) ;
  • 이재호 (홍익대학교 신소재공학과)
  • Received : 2010.02.16
  • Accepted : 2010.03.22
  • Published : 2010.03.30

Abstract

CNT and permalloy composite plating was investigated. CNTs were pretreated prior to electroplating to disassemble the tangled CNT lumps. The ball milling as a physical pretreatment and the acid treatment as a chemical pretreatment were used. 10M nitric acid and 10 M sulfuric acid were used for the chemical pretreatment. Sulfuric acid was more effective than nitric acid to disassemble CNT lumps. To disperse CNT in the solution, surfactants were used. SDS, Triton X-100 and PAA were used for this purpose. More CNTs were incorporated in permalloy coating when PAA was used as a surfactant. The surface morphologies were observed with FESEM after electroplating CNT and permalloy. The current densities were varied from 10 to $80\;mA/cm^2$ and the concentration of PAA was fixed at 2 g/L. The optimum current density without surface cracks was $20\;mA/cm^2$. The crystallinity of the deposit was analyzed with XRD and the surface hardness was analyzed with Vicker's hardness tester. The corrosion behavior was analyzed with polarization plot. The physical properties of permalloy were not improved with CNT composite plating.

CNT-퍼멀로이 복합도금을 실시하였다. CNT를 더 작게 분쇄하기 위하여 전처리를 하였다. 볼밀링과 같은 물리적인 처리보다 산처리와 같은 화학적인 처리가 CNT 분쇄에 더 효과적이었다. 10 M 질산과 10 M 황산이 사용되었으며 황산이 질산보다 CNT의 입체적인 구조를 줄이는데 있어서 더 효과적이었다. 산처리 과정만을 거친 CNT를 $10{\sim}40\;mA/cm^2$의 전류밀도 하에서 복합전기도금시킨 후 FESEM을 통하여 표면을 관찰하였다. 분산제를 사용하여 CNT 분산을 하였다. 분산제의 종류로는 Sodium Dodecyl Sulfate(SDS)와 Triton-X 100, Poly Acrylic Acid(PAA)를 사용하였다. PAA를 사용하여 도금한 경우 다른 분산제를 사용한 것에 비하여 더 많은 CNT가 공침되었다. PAA 2 g/L를 이용하여 분산시킨 CNT를 $10{\sim}80\;mA/cm^2$의 전류밀도 하에서 도금되었으며 FESEM으로 표면을 관찰하였다. 전류밀도가 $20\;mA/cm^2$인 경우 표면에 균열을 발생시키지 않는 도금층을 얻었다. 도금된 표면의 결정화 정도를 XRD로 관찰하고 표면 경도를 측정하였으며 분극 거동을 통해 내식성을 비교하였다. CNT의 첨가로 인한 경도의 변화는 없었으며 내식성의 향상도 관찰되지 않았다.

Keywords

References

  1. Y. Moon, J. H. Lee, T. S. Oh and J. Y. Byun, "The Fabrication of Nickel-Diamond Composite Coating by Electroplating Method", J. of Microelectronics & Packaging Soc., 14(1), 55 (2007).
  2. K. Msellak, J. P. Chopart, O. Jbara, O, Aaboubi and J. Amblard, "Magnetic field effects on Ni-Fe alloys codeposition", J. of Magnetism and Magnetic Materials, 281, 295 (2004). https://doi.org/10.1016/j.jmmm.2004.04.118
  3. C. Cheung, F. Djuanda and G. Palumbo, "Electrodeposition of nanocrystalline Ni-Fe alloys", Nano structured Materials, 5, 513 (1995). https://doi.org/10.1016/0965-9773(95)00264-F
  4. K. Gupta, K. K. Raina and S. K. Sinha, "Influence of process parameters and alloy composition on structural, magnetic and electrical characteristics of Ni-Fe permalloys", J. of Alloys and Compounds, 429, 357 (2007). https://doi.org/10.1016/j.jallcom.2006.11.048
  5. L. Agui, P. Y. Sedeno and J. M. Pingarron, "Role of carbon nanotubes in electroanalytical chemistry", Analytica Chimica acta, 622, 11 (2008). https://doi.org/10.1016/j.aca.2008.05.070
  6. J. W. Ihm, D. K. Choi and H. R, "The characteristics of prepared electrode catalyst and MEA using CNF and CNT", J. of the Microelectronics & Packaging Soc., 11(1), 59 (2004).
  7. J. H. Lee, "Utilization of CNT for new interconnect materials in electronic packaging", Vol. 16, 1 (2009).
  8. G. Cao, Nanostructures and nanomaterials, 1st Ed., pp.151-157 Imperial College Press, London (2004)
  9. K. M. Yin and B. T. Lin, "Effects of boric acid on the electrodeposition of iron, nickel, and iron-nickel", Surface and Coatings Technology, 78, 205 (1996). https://doi.org/10.1016/0257-8972(94)02410-3
  10. P. C. Andricacos, C. Arana, J. Tabib, J. Dukovic and L. R. Romankiw, "Electrodeposition of Nickel-Iron Alloys", J. of Electrochem. Soc., 136, 1336 (1989). https://doi.org/10.1149/1.2096917
  11. D. L. Grimmett, M. Schwartz and K. Nobe, "Pulsed Electrodeposition of Iron-Nickel Alloys", J. of Electrochem. Soc., 137, 3414 (1990). https://doi.org/10.1149/1.2086231
  12. D. L. Grimmett, M. Schwartz and K. Nobe, "A Comparison of DC and Pulsed Fe-Ni Alloy Deposits", J. of Electrochem. Soc., 140, 973 (1993). https://doi.org/10.1149/1.2056238