• Title/Summary/Keyword: photovoltaics

Search Result 284, Processing Time 0.02 seconds

Effect of Metal Mask Screen on Metal-induced Recombination Current and Solar Cell Characteristics (금속 마스크 스크린이 금속 재결합 전류와 태양전지 특성에 미치는 영향)

  • Lee, Uk Chul;Jeong, Myeong Sang;Lee, Joon Sung;Song, Hee-eun;Kang, Min Gu;Park, Sungeun;Chang, Hyo Sik;Lee, Sang Hee
    • Current Photovoltaic Research
    • /
    • v.9 no.1
    • /
    • pp.6-10
    • /
    • 2021
  • The mesh mask screen, which is generally used for screen printing metallization of silicon solar cell, requires high squeegee pressure and low printing speed. These requirements are acting as a limiting factor in production yield in photovoltaic industries. In order to improve the productivity, a metal mask, which has high durability and high printing speed, has been researched. In this paper, the characteristics of each solar cell, in which electrodes were formed by using a metal mask and a mesh mask, were analyzed through recombination current density. In particular, the metal-induced recombination current density (Jom) representing the recombination of the emitter-metal interface was calculated using the shading method, and the resulting efficiency and open-circuit voltage were analyzed through the diode equation. As a result of analyzing the proportion of the metal-induced recombination current density to the total emitter recombination current density, it was analyzed that the reduction of the metal-induced recombination current density through the metal mask is an important factor in reducing the total recombination current density of the solar cell.

Fault Diagnosis of PV String Using Deep-Learning and I-V Curves (딥러닝과 I-V 곡선을 이용한 태양광 스트링 고장 진단)

  • Shin, Woo Gyun;Oh, Hyun Gyu;Bae, Soo Hyun;Ju, Young Chul;Hwang, Hye Mi;Ko, Suk Whan
    • Current Photovoltaic Research
    • /
    • v.10 no.3
    • /
    • pp.77-83
    • /
    • 2022
  • Renewable energy is receiving attention again as a way to realize carbon neutrality to overcome the climate change crisis. Among renewable energy sources, the installation of Photovoltaic is continuously increasing, and as of 2020, the global cumulative installation amount is about 590 GW and the domestic cumulative installation amount is about 17 GW. Accordingly, O&M technology that can analyze the power generation and fault diagnose about PV plants the is required. In this paper, a study was conducted to diagnose fault using I-V curves of PV strings and deep learning. In order to collect the fault I-V curves for learning in the deep learning, faults were simulated. It is partial shade and voltage mismatch, and I-V curves were measured on a sunny day. A two-step data pre-processing technique was applied to minimize variations depending on PV string capacity, irradiance, and PV module temperature, and this was used for learning and validation of deep learning. From the results of the study, it was confirmed that the PV fault diagnosis using I-V curves and deep learning is possible.

Estimation of Power Using PV System Model Formula and Machine Learning (태양광시스템 모델식과 기계학습을 이용한 발전성능 추정)

  • Hyun Gyu Oh;Woo Gyun Shin;Young Chul Ju;Soo Hyun Bae;Hye Mi Hwang;Gi Hwan Kang;Suk Whan Ko;Hyo Sik Chang
    • Current Photovoltaic Research
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • In this paper, a machine learning model by using a regression algorithm is proposed to estimate the power generation performance of the BIPV system. The physical model formula for estimating the generation performance and the proposed model were compared and analyzed. For the physical model formula, simple efficiency model, temperature correction model, and regressive physics model for changing an irradiance were used. As a result, when comparing the regressive physics model for changing an irradiance and the proposed model with the actual generation measured data, the respective RMSE values are 0.1497 kW, 0.0451 kW and the accuracy values are 86.44%, and 96.56%. Therefore, the proposed model implemented in this experiment can be useful in estimating power generation.

Impact of Absorber Thickness on Bifacial Performance Characteristics of Semitransparent Amorphous Silicon Thin-Film Solar Cells (광흡수층 두께에 따른 투광형 비정질 실리콘 박막 태양전지의 양면발전 성능특성)

  • Seo, Yeong Hun;Lee, Ahruem;Shin, Min Jeong;Cho, Ara;Ahn, Seungkyu;Park, Joo Hyung;Yoo, Jinsu;Choi, Bo-Hun;Cho, Jun-Sik
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.97-102
    • /
    • 2019
  • Bifacial and semitransparent hydrogenated amorphous silicon (a-Si:H) thin-film solar cells in p-i-n configuration were prepared with front and rear transparent conducting oxide (TCO) electrodes using plasma-enhanced chemical vapor deposition method. Fluorine-doped tin oxide and tin-doped indium oxide films were used as front and rear TCO contacts, respectively. Film thickness of intrinsic a-Si:H absorber layers were controlled from 150 nm to 450 nm by changing deposition time. The dependence of performance characteristics of solar cells on the front and rear illumination direction were investigated. For front illumination, gradual increase in the short-circuit current density (JSC) from 10.59 mA/㎠ to 14.19 mA/㎠ was obtained, whereas slight decreases from 0.83 V to 0.81 V for the open-circuit voltage (VOC) and from 68.43% to 65.75% for fill factor (FF) were observed. The average optical transmittance in the wavelength region of 380 ~ 780 nm of the solar cells decreased gradually from 22.76% to 15.67% as the absorber thickness was changed from 150 nm to 450 nm. In case of the solar cells under rear illumination condition, the JSC increased from 10.81 to 12.64 mA/㎠ and the FF deceased from 66.63% to 61.85%, while the VOC values were maintained at 0.80 V with increasing the absorber thickness from 150 nm to 450 nm. By optimizing the deposition parameters, a high-quality bifacial and semitransparent a-Si:H solar cell with 350 nm-thick i-a-Si:H absorber layer exhibited the conversion efficiencies of 7.69% for front illumination and 6.40% for rear illumination, and average visible optical transmittance of 17.20%.

A Study on the Output and Reliability Characteristics of Ultra Barrier Film PV Module (고분자 보호 필름을 적용한 태양광 모듈의 출력 및 신뢰성에 관한 연구)

  • Lim, Jong Rok;Shin, Woo Gyun;Yoon, Hee Sang;Kim, Yong Sung;Ju, Young-Chul;Ko, Suk-Whan;Kang, Gi-Hwan;Hwang, Hye-Mi*
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.1-10
    • /
    • 2019
  • Recently, the installation capacity of PV (photovoltaic) systems has been increasing not only field installation but also floating PV, farm land, BIPV/BAPV. For this reason, the new design and materials of PV module are needed. In particular, in order to apply a PV system to a building, lightweight of the PV module is essential. PV modules made of generally used texturing glass are excellent in output and reliability, but there is a limit to the weight that can be reduced. For the lightweight of the PV module, it necessary to use a film instead of a glass. However, the application of film rather than a glass may cause various problems such as decrease in photocurrent by decrease in transmittance and a increase of CTM (cell to module) loss, a degradation of the reliability, and so on. In this paper, PV modules using Ultra barrier film, which is recently a lot of interest as a substitute for a glass, its characteristic analysis and reliability test were conducted. The transmittance and UV characteristics of each material were verified, and the output of the fabricated 1 cell PV module was measured. In addition, 24 cell PV modules were fabricated at the lab-scale and its reliability tests were conducted. As a result of the experiment, the reliability characteristics of the ultra barrier film PV module were excellent, and it was confirmed that it could be used as the front material of the PV module instead of glass

A Case Study on the Islanding Detection Protection of PV System and ESS System (태양광 발전과 ESS 시스템의 연계운전시 단독운전 방지 사례 연구)

  • Lim, Jong Rok;Hwang, Hye-Mi;Shin, Woo Gyun;Ju, Young-Chul;Jung, Young Seok;Kang, Gi-Hwan;Ko, Suk-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.59-66
    • /
    • 2019
  • BIPV or BAPV installation applied to building is increasing through public utility mandates enterprise. Solar PV energy generates only during the day, but if it is operated in convergence with ESS, which stores electrical energy, it can restrain the fossil energy used in buildings throughout the day. A solution is to converge with PV system and ESS. However, PV systems and ESS connected to the power grid in parallel can cause problems of electrical stability. A study was conducted on the case of failure to detect islanding operation under the parallel operation of PV generation and ESS that are connected in parallel to power grid. Experiments conducted various non-islanding detections under the operating conditions. In the experiment results, when one PCS - PV inverter or ESS inverter - was operating under the islanding condition, it stopped working within 0.5 seconds of the Korean grid standard. However, when both of PV inverter and ESS inverter were operating at the same time under the islanding situation, the anti-islanding algorithm did not operate normally and both inverters continuously supplied power to the connected RLC loads. islanding detection Algorithm developed by each inverter manufacturer has caused this phenomenon. Therefore, this paper presented a new test standard for islanding detection.

Morphology Control of Active Layers for Efficient Organic Indoor Photovoltaics (광활성층 모폴로지 제어를 통한 실내광 유기태양전지의 효율 향상 연구)

  • Yongchan Jang;Soyoung Kim;Jeonga Kim;Jongbok Kim;Wonho Lee
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.130-136
    • /
    • 2022
  • Recently, organic semiconductor based indoor photovoltaics have gained attention since they exhibit excellent photovoltaic performance than that of conventional Si-based photovoltaics. In this study, we synthesize the medium bandgap polymer of PTBT and optimize PTBT:PC71BM blend films by introducing solvent additives. To this end, we select DIO and CN solvent additives and vary their contents from 0 to 3 vol%. As a result, we produce the highest power conversion efficiency of 11.31% under LED 1000 lx conditions with DIO (1.5 vol%) + CN (0.5 vol%)

Photovoltaic Solar Energy Conversion : Recent Progress

  • Green, Martin A.
    • Electrical & Electronic Materials
    • /
    • v.11 no.10
    • /
    • pp.100-105
    • /
    • 1998
  • Along with fusion energy, photovoltaic solar energy conversion has long been considered as one of the few sustainable options for large scale energy supply in the future. In the past, commercial use has been restricted largely to remote area applications where conventional electricity is expensive. However, 1998 marked a year of transition where the major application of the cells changed to become generation of residential electricity in urban areas already supplied by the conventional grid. The current state of the technology is discussed as are major overseas programs to accelerate the urban residential use of photovoltaics, particularly in Japan, Europe and the United States, includng the "million roof" program in the latter. Finally, the planned use of photovoltaics in the Sydney 2000 Olympics is described, where the technology will be used to provide most of the electricity requirements of the 665 residences which will be a legacy of the Olympic Village.

  • PDF

Control Strategy and Characteristic Analysis of PEMFC/Photovoltaics Hybrid Vehicle (연료전지-태양전지 하이브리드 자동차에 대한 제어전략 및 특성평가)

  • Ahn, Hyo-Jung;Ji, Hyun-Jin;Bae, Joong-Myeon;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.840-847
    • /
    • 2007
  • This Paper focuses on modeling and simulation to analyze the characteristic of hybrid vehicle. The system includes a proton exchange membrane fuel cell(PEMFC), photovoltaic generator(PV), lead-acid battery, motor, vehicle and controller. Main electricity is produced by the PEMFC and battery to meet the requirements of a user load. When vehicle is parked in a sunny place, extra power is generated by the photovotaics and is charged in a battery for next drive. Further we evaluate usefulness of this hybrid vehicle by using ADVISOR - the advanced vehicle simulator written in the Matlab/Simulink environment. According to simulation results, the extra power obtained by photovoltaics which have been explored in nature conditions can help to reduce the electrical load of PEMFC and increase the efficiency (over 21 %).

SOLAR PHOTOVOLTAICS IN INDIA : A STATUS REVIEW

  • DUTTA, VIRESH
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.130-133
    • /
    • 2006
  • Solar Photovoltaics (SPV) In India has become an important renewable source of energy particularly for rural and remote areas. The vastness of the country and the requirements of electricity in far-flung villages makes SPV very attractive, with inherent technological advantages providing additional boost. This has been recognized very early by Govt. Of India and Ministry of Non-Conventional Sources of Energy (MNES) has been entrusted with promoting SPV usage in the country. Rural electrification through SPV systems is one of the programmes which is expected to provide fillip to PV industry in the country. PV Industry in India is very well established with capability of solar cell fabrication and module fabrication as well as Balance of System design and fabrication. There several R&D groups in the academic institutions who are involved in improving solar cells efficiency, thin film solar cells and PV instrumentation. Thus, India provides a ready market for large scale utilization of solar energy through SPV technology.

  • PDF