• Title/Summary/Keyword: photovoltaic power system

Search Result 1,508, Processing Time 0.032 seconds

The Basic of Comparative Analysis on Characteristic of MW Photovoltaic Power System on Wide Area (광역별 MW급 태양광발전시스템의 발전량 특성 비교분석 기초(I))

  • Park, Seok-Gi;Kim, Dong-Gyun;Choy, Ick;Choi, Ju-Yeop;Yu, Gwon-Jong
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.475-476
    • /
    • 2016
  • According to government supporting a renewable generation, a number of industrial MW photovoltaic systems have already been installed and rapidly increased. Even though the supporting is increased, analysis on power valuation and roll of a photovoltaic system are insufficient. In this paper, comparative analysis on characteristic of photovoltaic power system are illustrated as basic of power valuation by collecting power and irradiation data from MW photovoltaic system on wide area.

  • PDF

Maximum Power Point Tracking without Current Sensor for Small Scale Photovoltaic Power System

  • Kasa Nobuyuki;Iida Takahiko;Majumdar Gourab
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.631-634
    • /
    • 2001
  • This paper presents a maximum power point tracking without a current sensor for a small scale photovoltaic power system. The small scale photovoltaic power systems are used in parallel, and so the cost and the reliability are strongly demanded. In the proposed inverter, the current is controlled with open loop, and then the power of photovoltaic array is calculated by the equation using the voltage of the photovoltaic array. Therefore, the system can obtain the power by detecting only the voltage of the photovoltaic array. As a result, we may obtain the performance of the MPPT with a current sensor as well as with a current sensor.

  • PDF

Railway Switching Point Heating System Using the Photovoltaic-Wind Power Hybrid (태양광-풍력 하이브리드를 이용한 철도 선로전환기 융설 장치 구현)

  • Kim, Dae-Nyeon;Park, Han-Eol;Kim, Deok-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.136.1-136.1
    • /
    • 2011
  • This paper proposes the method to implement the railroad switching point heating system using the hybrid of the photovoltaic and wind power. The goal of the implementation of the railroad switching point heating system is to prevent freezing of the snow in the winter. The heating system of railway used to supply electricity through photovoltaic and wind power to prevent freezing. Hot wires of the railroad switching point heating system are used about 2kW of electric energy at the day. The electric energy of 2kW used the length of the hot wires about 3m. As the ON and/or OFF mode considering the tracks temperature and the ambient temperature, so the way the use of power-saving effect. In addition, the system can be used the railroad switching point heating system in winter and railway signal and street lights around the track in summer. In experiment, we acquired the power data according to time at the day of photovoltaic and wind power. We confirmed the temperature rise using the heating cable for 3m of $85^{\circ}C$, 30W/m. The temperature rise of the heating cable changes the temperature of $5^{\circ}C$ after 10 minutes and $11^{\circ}C$ after 10 minutes. We have confirmed the possibility of the railroad switching point heating system using the hybrid of the photovoltaic and wind power.

  • PDF

A Control Method to Mitigate the Influence of Input Capacitor in Photovoltaic Power Curtailment (태양광 출력 감발 시 입력 커패시터 영향 완화를 위한 제어 방법)

  • Yang, Hyoung-Kyu;Park, Jung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.106-111
    • /
    • 2021
  • This study proposes a control method to mitigate the influence of input capacitors in photovoltaic power curtailment. The influence is analyzed by the power flow in the photovoltaic system. In conventional power curtailment, the power injected to the grid may be increased momentarily because the influence of the input capacitor on the power injected to the grid is not considered. The proposed method limits the change rate of photovoltaic array voltage to prevent a momentary increase in the power injected to the grid. The effectiveness of proposed method, which reduces power overshoot, is verified by experimental tests. The proposed method enables the power grid to operate stably in photovoltaic power curtailment.

Analysis of Power Pattern According to Irradiation for Photovoltaic Generation System (태양광발전 시스템의 일사량에 따른 전력 패턴 분석)

  • Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.602-608
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. As I-V characteristics according to a temperature range of 10~50[$^{\circ}C$], the area of I-V characteristics were increased with an increase in temperature. Since this area corresponds to the power, output power is thought to have increased with temperature. As output power characteristics according to a temperature range of 10~50[$^{\circ}C$], output power was increased with an increase in temperature. Since output power increases with temperature increase, the result corresponds well to the related equation on temperature and output power. As I-V characteristics according to a irradiation range of 100~900 [$W/m^2$], voltage and current were increased with an increase in irradiation. The result is thought of as an increase in output power with increasing irradiation. As output power characteristics according to a irradiation range of 100~900 [$W/m^2$], output power was increased with increasing irradiation. This result corresponds well to the related equation on irradiation and output power.

A Study on Constant Power Generation Algorithms for a Whole Range Power Point Tracking in Photovoltaic Systems (태양광 시스템의 전 범위 전력점 추종을 위한 CPG 알고리즘에 관한 연구)

  • Yang, Hyoung-Kyu;Bang, Taeho;Bae, Sunho;Park, Jung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.111-119
    • /
    • 2019
  • In this study, constant power generation (CPG) algorithms are introduced for whole range power point tracking in photovoltaic systems. Currently, maximum power point tracking (MPPT) algorithm is widely used for high-power photovoltaic systems. However, MPPT algorithm cannot flexibly control such systems according to changing grid conditions. Maintaining grid stability has become important as the capacity of grid-connected photovoltaic systems is increased. CPG algorithms are required to generate the desired power depending on grid conditions. A grid-connected photovoltaic system is configured, and CPG algorithms are implemented. The performances of the implemented algorithms are compared and analyzed by experimental results.

WEB-BASED MONITORING FOR PHOTOVOLTAIC/WIND POWER GENERATION FACILITIES (태양광/풍력 발전설비의 웹기반 모니터링기술)

  • Park, Se-Jun;Yoon, Jeong-Phil;Cha, In-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11b
    • /
    • pp.33-37
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested But, hybrid generation system cannot always generate stable output due to the varying weather condition So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.

  • PDF

Power Prediction of P-Type Si Bifacial PV Module Using View Factor for the Application to Microgrid Network (View Factor를 고려한 마이크로그리드 적용용 고효율 P-Type Si 양면형 태양광 모듈의 출력량 예측)

  • Choi, Jin Ho;Kim, David Kwangsoon;Cha, Hae Lim;Kim, Gyu Gwang;Bhang, Byeong Gwan;Park, So Young;Ahn, Hyung Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.182-187
    • /
    • 2018
  • In this study, 20.8% of a p-type Si bifacial solar cell was used to develop a photovoltaic (PV) module to obtain the maximum power under a limited installation area. The transparent back sheet material was replaced during fabrication with a white one, which is opaque in commercial products. This is very beneficial for the generation of more electricity, owing to the additional power generation via absorption of light from the rear side. A new model is suggested herein to predict the power of the bifacial PV module by considering the backside reflections from the roof and/or environment. This model considers not only the frontside reflection, but also the nonuniformity of the backside light sources. Theoretical predictions were compared to experimental data to prove the validity of this model, the error range for which ranged from 0.32% to 8.49%. Especially, under $700W/m^2$, the error rate was as low as 2.25%. This work could provide theoretical and experimental bases for application to a distributed and microgrid network.

A Novel Photovoltaic Power Generation System including the Function of Shunt Active Filter

  • Park, Minwon;Seong, Nak-Gueon;Yu, In-Keun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.103-110
    • /
    • 2003
  • With significant development of power electronics technology, the proliferation of nonlinear loads such as static power converters has deteriorated power quality in power transmission and distribution systems. Notably, voltage harmonics resulting from current harmonics produced by the nonlinear loads have become a serious problem in many countries. Many photovoltaic power generation systems installed in building systems have harmonics that are the worst object for distribution systems as a utility interactive system, and it tends to spread out continuously. Proposed and implemented in this paper is a multi-function inverter control strategy that allows a shunt active filter function to the power inverter of the photovoltaic power generation system established on a building system. The effectiveness of the proposed system is demonstrated through the simulation of a hypothetical power system using PSCAD/EMTDC.

Power Survey of 30kW Solar System without tracking mechanism (30kW 고정식 태양광발전시스템의 발전 특성 조사)

  • Moon, Chae-Joo;Lim, Joung-Min;Chang, Young-Hak;So, Soon-Youl;Choi, Byung-Chun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1126-1127
    • /
    • 2008
  • A photovoltaic panel is a device that, through the photovoltaic effect, converts luminous energy into electric energy. Photovoltaic generation system used infinity of solar energy, cost of fuel is needless and there in no air pollution or waste occurrence. This paper summarizes the results of these efforts by offering a photovoltaic system structure in 30[kW] large scale applications installed in Mokpo National University dormitory roof. The status of photovoltaic system components, are inter-connection and safety equipment monitoring system will be summarized as this article. This describes configuration of utility interactive photovoltaic system which generated power supply for dormitory. In this paper represent 30[kW] utility photovoltaic system examination result.

  • PDF