• Title/Summary/Keyword: photovoltaic modules

Search Result 362, Processing Time 0.045 seconds

Installation and Operating with Photovoltaic System of Sunshade Type (차양형 태양광발전시스템의 설치 및 운영에 관한 연구)

  • Lee, So-Mi;Shim, Hun;Lee, Yong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.136-141
    • /
    • 2005
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are solid state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. So, the purpose of this research is to present how to get PVIB which can be applied building facade and how to apply it. From the basis of these results this study will intend to develop an integrated for optimal design of PV System.

  • PDF

Status of Photovoltaic Modules in Korea (국내 태양전지모듈 보급 현황)

  • Kim, Hyun-Il;Kang, Gi-Hwan;Park, Kyung-Eun;Yu, Gwon-Jong;Suh, Seung-Jik
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1090_1091
    • /
    • 2009
  • In 2008, the global photovoltaic(PV) market reached 5.6GW and the cumulative PV power installed totalled almost 15GW compared to 9GW in 2007. Due to a favourable feed-in-tariff, Korea emerged in 2008 as the 4th largest PV market worldwide. PV power installation rose 495.5 percent to 268MW in 2008 compare to 45MW in 2007. And PV manufacturer will increase the capacity of production facilities by 910MW in 2009. If the 500MW cap is removed, the growth of the korea market will reach up to 1GW by 2013.

  • PDF

Backstepping Control of a Buck-Boost Converter in an Experimental PV-System

  • Vazquez, Jesus R.;Martin, Aranzazu D.
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1584-1592
    • /
    • 2015
  • This paper presents a nonlinear method to control a DC-DC converter and track the Maximum Power Point (MPP) of a Photovoltaic (PV) system. A backstepping controller is proposed to regulate the voltage at the input of a buck-boost converter by means of Lyapunov functions. To make the control initially faster and avoid local maximum, a regression plane is used to estimate the reference voltages that must be obtained to achieve the MPP and guarantee the maximum power extraction, modifying the conventional Perturb and Observe (P&O) method. An experimental platform has been designed to verify the validity and performance of the proposed control method. In this platform, a buck-boost converter has been built to extract the maximum power of commercial solar modules under different environmental conditions.

The Realization of MPPT Controller Using Fuzzy Controller for Photovoltaic System (퍼지제어기를 이용한 태양광발전시스템의 MPPT 제어기 구현)

  • Cho, Geum-Bae;Choi, Yeon-Ok;Baek, Hyung-Lae
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.89-96
    • /
    • 2004
  • PV system is easy to operate and maintain than the other power generating system since it generally contains no moving parts, operates silently and requires very little maintenance. A solar cell generates DC power from sunlight whose power is different at any instance according to condition of irradiation and temperature variables. In order to improve the system utility factor and efficiency of energy conversion, it is desirable to operate the PV system at maximum power point of solar cell under different condition This paper describes the experimental results of the PV system contain solar modules and a DC-DC converter(boost type chopper) using fuzzy controller. The experimental results show that the PV system always operates at maximum power point of solar cells having stabilized output voltage waveform with relatively small ripple component.

A Study on optimal design for installion of 500kWp PV system testing ground (500kW급 태양광시험장 구축을 위한 최적설계에 관한연구)

  • Kim, Eui-Hwan;Jang, Ju-Yeon;Lim, Hee-Chun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.43-48
    • /
    • 2010
  • The performance of photovoltaic systems could be affected by various factors including installing conditions of modules, and their own efficiencies of solar cells and inverters. The installing conditions of a photovoltaic system including array types, tilting angles, azimuth, locations, quantities of sunshine, optimum angles of inclination and separated distance are analyzed using the SolarPro & Minitep SW simulation program, inorder to set up the installing conditions for improving system performance. The result from the simulation of the 500kWp PV system of Kochang with optimal installing conditions compared with normal conditions shows that the capacity factor has been increased from 11.02% to 12.06%.

Trend of Packaging Technology for Floating Photovoltaics (수상/해상 태양광발전 시스템의 패키징 기술개발 동향)

  • Choi, Su Bin;Kim, Myounghun;Kim, Kwang-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.21-27
    • /
    • 2020
  • The importance of floating photovoltaic systems has recently been emerging to address some issues arising from the installation of conventional ground-mounted photovoltaics. Floating photovoltaics have a few advantages such as cutting down land usage, reducing water evaporation or creating algae. Though there is still necessity to supplement with technical issues: mechanical stability, reliability and long-term durability of floaters and modules. In this paper, we focus the current level of packaging development and introduce research trends that could be applied to next-generation floating photovoltaics.

PSPICE Modelling and Simulation about PV System (PV 시스템에 대한 PSPICE 모델링과 시뮬레이션)

  • Baek, Dong-Hyun;Song, Ho-Bin;Jung, Hyung-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.163-165
    • /
    • 2009
  • Many photovoltaic (PV) systems are being developed and installed. For a PV developer, simulations are required before the experimental testing. However, most simulation tools do not offer data libraries for PV systems, so that some Institutes who try to use such software will be in difficulty. In this paper, simulations of performance and stability have been carried out using the software PSPICE. In this paper, the modelling of solar cell arrays, photovoltaic modules, PV generators, batteries and drive systems is carried out based on mathematical equivalence circuits and available data, and the models are converted into a data library for PSPICE that is user friendly. System variations can be modeled by simple parameter variation. To verify the accuracy of the simulation library, various models were run and compared to known systems.

  • PDF

A modeling and performance comparison of photovoltaic module (태양광모듈의 모델링 및 성능해석 결과비교)

  • So, Jung-Hun;Yu, Byung-Gyu;Hwang, Hye-Mi;Yu, Gwon-Jong;Choi, Ju-Yeop
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1128-1129
    • /
    • 2008
  • The detailed modeling method of photovoltaic (PV) module are useful to perform detailed analysis of PV array performance for changing meteorological conditions, verify actual rated power of PV system sizing and, determine the optimal design of PV system and components. This paper investigates a modeling approach of PV module performance in terms of irradiance and temperature changes and compared measured with simulated value of PV modules.

  • PDF

The Optical Characteristics of Low Iron Glass for Photovoltaic Module Fabrication (태양전지모듈용 저철분 투과 유리의 광특성 평가)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1114-1115
    • /
    • 2008
  • In this paper, we study the optical characteristics of low iron glass for photovoltaic modules fabrication. Tow types of glasses are examined by optical transmittance and reflection measurement. Also, by making laminated glass, we analyze the difference between glass maker. Mini-PV module is fabricated to compare optical reflectance through lamination process. Anti-reflection and catalyst-coated glasses are suggested for advanced technology to obtain high electrical generation output. The specific analysis is shown in the following paper.

  • PDF

A Dynamic Power Distribution Strategy for Large-scale Cascaded Photovoltaic Systems

  • Wang, Kangan;Wu, Xiaojie;Deng, Fujin;Liu, Feng
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1317-1326
    • /
    • 2017
  • The cascaded H-bridge (CHB) multilevel converter is a promising topology for large-scale photovoltaic (PV) systems. The output voltage over-modulation derived by the inter-module active power imbalance is one of the key issues for CHB PV systems. This paper proposed a dynamic power distribution strategy to eliminate the over-modulation in a CHB PV system by suitably redistributing the reactive power among the inverter modules of the CHB PV system. The proposed strategy can effectively extend the operating region of the CHB PV system with a simple control algorithm and easy implementation. Simulation and experimental results carried out on a seven-level CHB grid-connected PV system are shown to validate the proposed strategy.