• Title/Summary/Keyword: photovoltaic equipment

Search Result 130, Processing Time 0.021 seconds

Probabilistic Power Flow Studies Incorporating Correlations of PV Generation for Distribution Networks

  • Ren, Zhouyang;Yan, Wei;Zhao, Xia;Zhao, Xueqian;Yu, Juan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.461-470
    • /
    • 2014
  • This paper presents a probabilistic power flow (PPF) analysis method for distribution network incorporating the randomness and correlation of photovoltaic (PV) generation. Based on the multivariate kernel density estimation theory, the probabilistic model of PV generation is proposed without any assumption of theoretical parametric distribution, which can accurately capture not only the randomness but also the correlation of PV resources at adjacent locations. The PPF method is developed by combining the proposed PV model and Monte Carlo technique to evaluate the influence of the randomness and correlation of PV generation on the performance of distribution networks. The historical power output data of three neighboring PV generators in Oregon, USA, and 34-bus/69-bus radial distribution networks are used to demonstrate the correctness, effectiveness, and application of the proposed PV model and PPF method.

50KW Photovoltaic Generation System for Model House Power Supply Using Alternative Energy (대체에너지 이용 시범주택 전원용 50KW 태양광발전시스템)

  • Park, J.M.;Park, J.H.;Kim, K.B.;Lee, K.Y.;Shin, S.H.;Cho, G.B.;Baek, H.N.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1335-1337
    • /
    • 2002
  • This paper presents experimental operation with utility interactive 50kw photovoltaic generation system. And that describe configuration of utility interactive photovoltaic system which power supply for dormitory. The status of photovoltaic generation system components and interconnection and safety equipment will be summarized. This paper discusses property operation state which system endure division of power for dormitory.

  • PDF

Analysis and Design of Utility Interactive Photovoltaic System with Source Side VAR Compensation (전원측 무효전력 보상기능을 갖는 계통연계형 태양광 발전 시스템의 해석 및 설계)

  • 이상용;고재석;한찬영;이정락;최규하;목형수
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.591-594
    • /
    • 1999
  • The application field of photovoltaic system has been increased widely. In the application of photovoltaic system, the utility interactive photovoltaic system(UIPVS) has benefits of not only the home energy saving in domestic system but also reduction of peak power which threaten the capacity of power plant equipment when the maximum power consumption is occurred in daytime. This paper represents the effect of the nonlinear AC load which connected to the UIPVS with parallel connection and introduces the active power filtering(APF) techniques to the UIPVS for the reactive power compensation. The enhancement of source side power quality using APF algorithm is verified using simulation.

  • PDF

A Study on the Operating Characteristics for Utility interactive 50KW Photovoltaic System (50KW 계통연계형 태양광발전시스템 운전특성에 관한 연구)

  • Lee, K.Y.;Chung, B.H.;Choi, M.H.;Lim, B.O.;Cho, G.B.;Baek, H.L.
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.243-246
    • /
    • 2002
  • This paper presents experimental operation with utility interactive 50kw photovoltaic generation system. And that describe configuration of utility interactive photovoltaic system which power supply for dormitory. The status of photovoltaic generation system components and interconnection and safety equipment will be summarized. This paper discusses property operation state which system endure division of power for dormitory.

  • PDF

Analysis of Generation Efficiency for Photovoltaic system according to input radiation angle (입사각에 따른 태양광발전시스템의 발전효율 분석)

  • Kim, H.S.;Lee, K.Y.;Choi, M.H.;Cho, G.B.;Baek, H.L.;Kim, P.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.228-230
    • /
    • 2003
  • This paper presents a utility interactive photovoltaic generation system with the angle of inclination and direction. This paper summarizes the results of these efforts by offering a snapshot of the configuration of photovoltaic in residential applications. The status of photovoltaic system components and interconnection and safety equipment will be summarized. This system is able to variation the angle of inclination and direction. Hence this paper discuss only results that might be useful for generation power.

  • PDF

Development of PV Module Process Using Automatic Arrangement Tool (자동배열장치를 이용한 태양전지모듈 제조 공정 개발)

  • Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.1-9
    • /
    • 2003
  • In this study, a manufacturing process for PV module has been developed using an automatic arraying equipment. It is expected that this process could improve the productivity and curtail the production cost in the photovoltaic module production line. From the results, it is proved that this process reduces Line-stop and enhances the productivity more than 15% a day which can be related directly to the production line cost.

50kw Photovoltaic Generation System of Chosun university Dormitory for Model House Power Supply (시범주택 전원용 조선대 기숙사 50kW 태양광발전시스템의 운전특성)

  • Park J. M.;Kim K. B.;Lee K. Y.;Seo J. Y.;Cho G. B.;Baek H. N.
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.62-64
    • /
    • 2002
  • This paper presents experimental operation with utility invertactive 50kW photovoltaic generation system. And that describe configuration of utility interactive photovoltaic system which power supply for dormitory. The status of photovoltaic generation system components and interconnection and safety equipment will be summarized. This paper discusses property operation state which system endure division of power for dormitory.

  • PDF

Analysis of Operating Efficiency for 50kW Utility Interactive Photovoltaic System in Chosun university (조선대학교 기숙사 50kW 계통연계형 태양광발전시스템 효율 분석)

  • Piao, Zheng-Guo;Park, Jong-Min;Lee, Kang-Yeon;Lim, Hong-Woo;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1736-1738
    • /
    • 2005
  • This paper presents experimental operation with utility interactive 50kw photovoltaic generation system. And that describe configuration of utility interactive photovoltaic system which power supply for dormitory. The status of photovoltaic generation system components and interconnection and safety equipment will be summarized. This paper discusses property operation state which system endure division of power for dormitory.

  • PDF

The Development of Photovoltaic Resources Map Concerning Topographical Effect on Gangwon Region (지형효과를 고려한 강원지역의 태양광 발전지도 개발)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Lee, Won-Hak
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.37-46
    • /
    • 2011
  • The GWNU (Gangnung-Wonju national university) solar radiation model was developed with radiative transfer theory by Iqbal and it is applied the NREL (National Research Energy Laboratory). Input data were collected and accomplished from the model prediction data from RDAPS (Regional Data Assimilated Prediction Model), satellite data and ground observations. And GWNU solar model calculates not only horizontal surface but also complicated terrain surface. Also, We collected the statistical data related on photovoltaic power generation of the Korean Peninsula and analyzed about photovoltaic power efficiency of the Gangwon region. Finally, the solar energy resource and photovoltaic generation possibility map established up with 4 km, 1 km and 180 m resolution on Gangwon region based on actual equipment from Shinan solar plant,statistical data for photovoltaic and complicated topographical effect.

Durability Evaluation Study of Re-manufactured Photovoltaic Modules (재 제조 태양광모듈의 내구성능 평가 연구)

  • Kyung Soo Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Photovoltaic (PV) power generation is the world's best and largest renewable energy that generates electricity with infinite sunlight. Solar cell modules are a component of photovoltaic power generation and must have a long-term durability of at least 25 years. The development of processes and equipment that can be recovered through the recycling of metals and valuable metals when the solar module's lifespan is over has been completed to the level of commercialization, but few processes have been developed that require repair due to initial defects. This is mainly due to the economic problems caused by remaking. However, if manufacturing processes such as repairing solar cell modules that have been proven to be early defects are established and the technical review of long-term reliability and durability reaches a certain level, it is considered that it will be a recommended process technology for environmental economics. In this paper, assuming that a defective solar cell module occurs artificially, a manufacturing process for replacement of solar cells was developed, and a technical verification of the manufacturing technology was conducted through long-term durability evaluation in accordance with KS C 8561. Through this, it was determined that remanufacturing technology for solar cell replacement of solar cell modules that occurred in a short period of time after installation was possible, and the research results were announced through a journal to commercialize solar modules using manufacturing technology in the solar market in the future.