• 제목/요약/키워드: photovoltaic characteristics

검색결과 734건 처리시간 0.036초

Performance Comparison of CuPc, Tetracene, Pentacene-based Photovoltaic Cells with PIN Structures

  • Hwang, Jong-Won;Kang, Yong-Su;Park, Seong-Hui;Lee, Hye-Hyun;Jo, Young-Ran;Choe, Young-Son
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.311-312
    • /
    • 2010
  • The fabricated photovoltaic cells based on PIN heterojunctions, in this study, have a structure of ITO/poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)/donor/donor:C60(10nm)/C60(35nm)/2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline(8nm)/Al(100nm). The thicknesses of an active layer(donor:C60), an electron transport layer(C60), and hole/exciton blocking layer(BCP) were fixed in the organic photovoltaic cells. We investigated the performance characteristics of the PIN organic photovoltaic cells with copper phthalocyanine(CuPc), tetracene and pentacene as a hole transport layer. Discussion on the photovoltaic cells with CuPc, tetracene and pentacene as a hole transport layer is focussed on the dependency of the power conversion efficiency on the deposition rate and thickness of hole transport layer. The device performance characteristics are elucidated from open-circuit-voltage(Voc), short-circuit-current(Jsc), fill factor(FF), and power conversion efficiency($\eta$). As the deposition rate of donor is reduced, the power conversion efficiency is enhanced by increased short-circuit-current(Jsc). The CuPc-based PIN photovoltaic cell has the limited dependency of power conversion efficiency on the thickness of hole transport layer because of relatively short exciton diffusion length. The photovoltaic cell using tetracene as a hole transport layer, which has relatively long diffusion length, has low efficiency. The maximum power conversion efficiencies of CuPc, tetracene, and pentacene-based photovoltaic cells with optimized deposition rate and thickness of hole transport layer have been achieved to 1.63%, 1.33% and 2.15%, respectively. The photovoltaic cell using pentacene as a hole transport layer showed the highest efficiency because of dramatically enhanced Jsc due to long diffusion length and strong thickness dependence.

  • PDF

태양전지모듈 고장 진단 알고리즘을 적용한 모니터링시스템 (The Monitoring System with PV Module-level Fault Diagnosis Algorithm)

  • 고석환;소정훈;황혜미;주영철;송형준;신우균;강기환;최정내;강인철
    • 한국태양에너지학회 논문집
    • /
    • 제38권3호
    • /
    • pp.21-28
    • /
    • 2018
  • The objects of PV (Photovoltaic) monitoring system is to reduce the loss of system and operation and maintenance costs. In case of PV plants with configured of centralized inverter type, only 1 PV module might be caused a large loss in the PV plant. For this reason, the monitoring technology of PV module-level that find out the location of the fault module and reduce the system losses is interested. In this paper, a fault diagnosis algorithm are proposed using thermal and electrical characteristics of PV modules under failure. In addition, the monitoring system applied with proposed algorithm was constructed. The wireless sensor using LoRa chip was designed to be able to connect with IoT device in the future. The characteristics of PV module by shading is not failure but it is treated as a temporary failure. In the monitoring system, it is possible to diagnose whether or not failure of bypass diode inside the junction box. The fault diagnosis algorithm are developed on considering a situation such as communication error of wireless sensor and empirical performance evaluation are currently conducting.

환경변화 요인에 따른 결정질 실리콘 태양전지모듈의 최대출력 특성 분석 (The Analysis on Maximum Output Power Characteristics of Crystalline Silicon Photovoltaic Module by Change of Environmental Effects)

  • 강기환;김경수;박지홍;유권종;안형근;한득영
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.23-28
    • /
    • 2007
  • In this study, we analyzed the maximum output power characteristics of crystalline silicon photovoltaic module by change of environmental effects. The electrical, optical and thermal property of PV modules were investigated during outdoor test period about 70 days. There was a fluctuation in maximum output power by change in transmittance caused by environment effects like rain, snow and dust. The effects of external environmental change were analyzed using climate data. Also local thermal temperature variation and transmittance imbalance on surface of PV module which might lead degradation of constituent material were detected using infrared camera. The further analysis is describe in the following paper.

자외선 조사량에 따른 태양전지 모듈 봉지재의 특성 분석 (Characterization of Photovoltaic Module Encapsulant According to UV Irradiation Dose)

  • 이송은;배준학;신재원;전찬욱
    • Current Photovoltaic Research
    • /
    • 제6권3호
    • /
    • pp.81-85
    • /
    • 2018
  • The photovoltaic modules installed in the actual field are affected by various external environments and the electrical performance output value is generally lowered compared to initial output value. The most of photovoltaic modules consists of low iron glass, encapsulant (EVA), back sheet, frame and junction box assembly based on the solar cells. In this paper, the characteristics of encapsulant which is an important constituent material of photovoltaic module were verified by maximum power determination, electro luminescence images, yellowness index measurement, and gel content measurement after ultraviolet (UV) irradiation exposure. The most commonly installed 72 cells crystalline photovoltaic modules were tested after various UV exposure of 0, 15, 30, and $60kWh/m^2$ and compared with the reference module. After UV exposure of $15kWh/m^2$, which is the current international test condition, a small amount of change was observed in yellowness index and electroluminescence, while a gell content rapidly increased. At a cumulative dose of $60kWh/m^2$, which will be a new international test condition in the near future, however, the yellowness index increased sharply and showed the greatest output power drop.

태양전지의 전기적인 출력특성이 태양전지모듈에 미치는 영향 (The Effects of PV Cell's Electrical Characteristics for PV Module Application)

  • 김승태;강기환;박지홍;안형근;유권종;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.36-41
    • /
    • 2008
  • In this paper, we study The Effects of PV Cell's Electrical Characteristics for PV Module Application. Photovoltaic module consists of serially connected solar cell which has low open circuit voltage and high short circuit current characteristics. The whole current flow of PV module is restricted by lowest current of one solar cell. For the experiment, we make PV module composing the solar cells that have short circuit current difference of 0%, 1%, 3% and Random. The PV module exposed about 35days, its the maximum power drop ratio was 4.282% minimum and 6.657% maximum. And PV module of low current characteristics has electrical stress from other modules. The solar cell temperature of PV module was higher compared to PV cell. To prevent early degradation, it is need to have attention to PV cell selection.

  • PDF

Analysis of PWM Converter for V-I Output Characteristics of Solar Cell

  • Han, Jeong-Man;Jeong, Byung-Hwan;Gho, Jae-Seok;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • 제3권1호
    • /
    • pp.62-67
    • /
    • 2003
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm. because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. Output dynamic characteristic of PV array is varied by irradiation and PWM converter performance is studied using PSIM simulator.

태양광전원의 연계에 의한 배전계통 보호기기의 최적 운용방안에 관한 연구 (Optimal Operation Methods of Protection Devices in Distribution Systems with PV Systems)

  • 김병기;박재범;유경상;노대석
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1485-1491
    • /
    • 2011
  • This paper deals with the technical problems for the protection devices, by simulating test facilities of protection coordination for Photovoltaic systems. In order to analyze the operation characteristics for the protection devices in the case that the Photovoltaic systems with bi-directional power supply are located in the feeder, this paper proposes the test facilities composed of model distribution system, protection device and model Photovoltaic systems. By performing the simulation for operation characteristics for the protection devices based on the test facilities, this paper presents the malfunction mechanism for the protection devices. The test results show that this paper is practical and effective for the technical guideline for the Photovoltaic systems.

건물일체형 반투명 태양광발전모듈의 후면 유리 종류에 따른 온도 및 발전 특성 분석 (Analysis of Temperature and Generation Characteristics of Semi-transparent Module)

  • 박경은;강기환;김현일;유권종;김준태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1106-1107
    • /
    • 2008
  • Building Integrated PV(BIPV) is one of the best fascinating PV application technologies. To apply PV module in building, various factors should be reflected such as installation position, shading, temperature, and so on. Especially a temperature should be considered, for it affects both electrical efficiency of a PV module and heating/cooling load in a building. It reports the effect of thermal characteristics of the PV module on generation performance. The study was performed by monitoring the temperature and experiment. The results showed that 1 degree temperature rise reduced about 0.48% of output power.

  • PDF

Photovoltaic Effects in CuPc/C60 and ZnPc/C60 Depending on the Organic Layer Thickness

  • Ahn, Joon-Ho;Lee, Joon-Ung;Lee, Won-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권3호
    • /
    • pp.115-118
    • /
    • 2005
  • Organic photovoltaic properties were studied in $CuPc/C_{60}$ and $ZnPc/C_{60}$ heterojunction structure by varying the organic layer thicknesses. Current density-voltage characteristics of organic photovoltaic cells were measured using Keithley 236 source-measure unit and a 500 W xenon lamp (ORIEL 66021) for a light source. From the analyses of current-voltage characteristics such as short-circuit current density, open-circuit voltage and power conversion efficiency, optimum thickness of the organic layer were obtained.

태양광 저에너지 출력을 위한 Buck, Boost 컨버터 구동방식 (Buck and Boost Photovoltaic Converter Driving Schemes under Low power level)

  • 김병우;박성준;김광헌;손무헌;조수억;김철우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.669-672
    • /
    • 2005
  • Normally, the buck converter is used for the charging converter of photovoltaic generator because this converter has good characteristics compare with boost and buck-booster converter But, in case of the sollar-cell voltage is lower than charging voltage, we cannot charge the sollar energy to the charger. So, in this paper, we proposed the novel hybrid converter using by combination of buck and boost converter for the charging converter of photovoltaic generator, as a results, it can operate buck, boost and buck-boost mode. The proposed novel converter has the same characteristics of the existent buck converter and furthermore it can operate as a boost converter. So, we can make the more effective photovoltaic charging system.

  • PDF