• Title/Summary/Keyword: photoelectron microscopy

Search Result 572, Processing Time 0.03 seconds

Growing High-Quality Ir-Sb Nanostructures by Controlled Electrochemical Deposition

  • Nisanci, Fatma Bayrakceken
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.165-171
    • /
    • 2020
  • The electrochemical preparation and spectroscopic characterisation of iridium-antimony (Ir-Sb) species is important owing to their potential applications as nanostructure materials. Nanostructures, i.e. nanoflower and nanodisk, of Ir-Sb were electrodeposited on conductive substrates using a practical electrochemical method based on the simultaneous underpotential deposition (UPD) of Ir and Sb from the IrCl3 and Sb2O3 at a constant potential. Electrochemical UPD mechanism of Ir-Sb was studied using cyclic voltammetry and potential-controlled electrochemical deposition techniques. Herein, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron and Raman spectroscopy were used to determine the morphological and structural properties of the electrochemically-synthesised Ir-Sb nanostructures.

Preparation of Highly Visible-Light Photocatalytic Active N-Doped TiO2 Microcuboids

  • Zhao, Kang;Wu, Zhiming;Tang, Rong;Jiang, Yadong
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.4
    • /
    • pp.489-492
    • /
    • 2013
  • N-doped $TiO_2$ microcuboids were successfully prepared by a simple one-pot hydrothermal method. The samples were characterized by X-ray diffraction, scanning electron microscopy, diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. It was found that the N-doped $TiO_2$ microcuboids enhanced absorption in the visible light region, and exhibited higher activity for photocatalytic degradation of model dyes. Based on the experimental results, a visible light induced photocatalytic mechanism was proposed for N-doped anatase $TiO_2$ microcuboids.

Effects of carbonization temperature on pore development in polyacrylonitrile-based activated carbon nanofibers

  • Lee, Hye-Min;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.146-150
    • /
    • 2014
  • In this work, activated carbon nanofiber (ACNF) electrodes with high double-layer capacitance and good rate capability were prepared from polyacrylonitrile nanofibers by optimizing the carbonization temperature prior to $H_2O$ activation. The morphology of the ACNFs was observed by scanning electron microscopy. The elemental composition was determined by analysis of X-ray photoelectron spectroscopy. $N_2$-adsorption-isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller and Dubinin-Radushkevich equations. ACNFs processed at different carbonization temperatures were applied as electrodes for electrical double-layer capacitors. The experimental results showed that the surface morphology of the CNFs was not significantly changed after the carbonization process, although their diameters gradually decreased with increasing carbonization temperature. It was found that the carbon content in the CNFs could easily be tailored by controlling the carbonization temperature. The specific capacitance of the prepared ACNFs was enhanced by increasing the carbonization temperature.

Structure and chemical properties of TiO2 surfaces on C fiber

  • Kim, Myoung-Joo;Kim, Kwang-Dae;Dey, Nilay Kumar;Seo, Hyun-Ook;Kim, Dong-Wun;Jeong, Myoung-Geun;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.81-81
    • /
    • 2010
  • Growth of TiO2 films prepared by atomic layer deposition (ALD) was studied on C fiber. Moreover, adsorption and photocatalytic decomposition of methylene blue on TiO2 thin films were studied. Preferential growth of TiO2 on steps of C surfaces could be identified by scanning electron microscopy (SEM). X-ray Photoelectron Spectroscopy (XPS) showed thickness-dependent positive core level shift of Ti, which can be interpreted in terms of enhanced final state charging for thicker films. Adsorption and photocatalytic behaviors of TiO2 thin films will be discussed in this poster.

  • PDF

Fabrication of Organic-Inorganic Hybrid Thin Film by Molecular Layer Deposition

  • Han, Gyu-Seok;Kim, Su-Hwan;Han, Gi-Bok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.251-251
    • /
    • 2010
  • Organic-inorganic hybrid materials have attracted because of its combined properties, such as flexibility and high electrical performance. In addition, the hybrid materials are expected to have synergic effect which are not shown in just one component. Here, we fabricated organic-inorganic hybrid thin film. Organic-inorganic hybrid thin film have been deposited from diethyl zinc and 1, 2, 4-trihydroxybenzene (THB) by molecular layer deposition (MLD). UV-VIS, Using Infrared spectrum and X-ray photoelectron spectroscopy confirm that Zinc and THB hybrid film (ZnTHB) consist of Zn-O and THB - oxide units and the micro structure and composition of hybrid film. hat the sequential surface reactions of diethyl zinc and ethylene glycol are sufficiently self-limiting and saturating to enable well-controlled MLD growth. Transmission electron microscopy image shows lamination growth of ZnTHB film according to cycle.

  • PDF

Selective Catalytic Etching of Graphene by SiOx Layer Depletion

  • Lee, Gyeong-Jae;Im, Gyu-Uk;Yang, Mi-Hyeon;Gang, Tae-Hui;Jeong, Seok-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.163.2-163.2
    • /
    • 2014
  • We report catalytic decomposition of few-layer graphene on an $Au/SiO_x/Si$ surface wherein oxygen is supplied by dissociation of the native $SiO_x$ layer at a relatively low temperature of $400^{\circ}C$. The detailed chemical evolution of the graphene covered $SiO_x/Si$ surface with and without gold during the catalytic process is investigated using a spatially resolved photoelectron emission method. The oxygen atoms from the native $SiO_x$ layer activate the gold-mediated catalytic decomposition of the entire graphene layer, resulting in the formation of direct contact between the Au and the Si substrate. The notably low contact resistivity found in this system suggests that the catalytic depletion of a $SiO_x$ layer could realize a new way to micromanufacture high-quality electrical contact.

  • PDF

The Characterization of Mn Based Self-forming Barriers on low-k Samples with or without UV Curing Treatment

  • Park, Jae-Hyeong;Han, Dong-Seok;Gang, Min-Su;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.352.2-352.2
    • /
    • 2014
  • In this present work, we report a Cu-Mn alloy as a materials for the self-forming barrier process. And we investigated diffusion barrier properties of self-formed layer on low-k dielectrics with or without UV curing treatment. Cu alloy films were directly deposited onto low-k dielectrics by co-sputtering, followed by annealing at various temperatures. X-ray diffraction revealed Cu (111), Cu (200) and Cu (220) peaks for both of Cu alloys. The self-formed layers were investigated by transmission electron microscopy. In order to compare barrier properties between Mn-based interlayer interlayer, thermal stability was measured with various low-k dielectrics. X-ray photoelectron spectroscopy analysis showed that chemical compositions of self-formed layer. The compositions of the Mn based self-formed barriers after annealing were determined by the C concentration in the dielectric layers.

  • PDF

Synthesis and Characterization of Tin Nitride Thin Films Deposited by Low Nitrogen Gas Ratio

  • Park, Ju-Yeon;Gang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.173.2-173.2
    • /
    • 2014
  • Thin nitride thin films were synthesized by reactive radio-frequency magnetron sputtering in the ultra high vacuum (UHV) chamber. To control the characteristics of thin films, tin nitride thin films were obtained various argon and nitrogen gas mixtures, especially low nitrogen gas ratios. Tin nitride thin films were analyzed with alpha step, scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and 4 point probe measurement. The result of alpha step and SEM showed that the thickness of thin nitride thin films were decreased with increasing nitrogen gas ratios. The metallic tin structure was decreased and the amorphous tin nitride structure were observed by XRD with higher nitrogen gas ratios. The oxidation state of tin and nitride were studied with high resolution Sn 3d and N 1s XP spectra.

  • PDF

XPS Characterization and Morphology of MgO Thin Films grown on Single-Crystalline Diamond (100)

  • Lee, S.M.;Ito, T.;Murakami, H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.19-27
    • /
    • 2003
  • Morphology and composition of MgO films grown on single-crystalline diamond (100) have been studied. MgO thin films were deposited in the substrate temperature range from room temperature (RT) to 723K by means of electron beam evaporation using MgO powder source. Atomic force microscopy images indicated that the film grown at RT without $O_2$ supply was relatively uniform and flat whereas that deposited in oxygen ambient yielded higher growth rates and rough surface morphologies. X-ray photoelectron spectroscopy analyses demonstrate that the MgO film deposited at RT without $O_2$ has the closest composition to the stoichiometric MgO, and that a thin contaminant layer composed mainly of magnesium peroxide (before etching) or hydroxide (after etching) was unintentionally formed on the film surface, respectively. These results will be discussed in relation to the interaction among the evaporated species and intentionally supplied oxygen molecules at the growth front as well as the interfacial energy between diamond and MgO.

  • PDF

A Study on electroless palladium layer characteristics and its diffusion in the electroless palladium immersion gold(EPIG) surface treatment (EPIG 표면처리에서의 무전해 팔라듐 피막 특성 및 확산에 관한 연구)

  • Heo, Jin-Yeong;Lee, Chang-Myeon;Gu, Seok-Bon;Jeon, Jun-Mi;Lee, Hong-Gi;Heo, Uk-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.120.2-120.2
    • /
    • 2017
  • 본 연구에서는 고신뢰성 인쇄회로기판이나 플립칩 패키지에 적용되는 범프 표면처리에서 널리 사용되는, ENIG나 ENEPIG 대체를 위한 electroless Pd/immersion Au(EPIG)에 대하여 연구하였다. Transmission electron microscopy(TEM) 분석 결과 형성된 Au layer는 crystalline, Pd layer는 amorphous 임을 확인하였으며, 열처리 후 X-Ray photoelectron spectroscopy(XPS)를 통하여 EPIG층이 하부 copper의 확산방지막으로서 효과가 있음을 알 수 있었다. 또한, 비정질 Pd layer가 확산을 방지하기 위하여는 일정수준 이상의 두께가 필요하며, 그 두께는 35~65nm 수준임을 알 수 있었다.

  • PDF