• Title/Summary/Keyword: photocurrent intensity

Search Result 65, Processing Time 0.026 seconds

Preparation of TiO2 Nanowires/Nanoparticles Composite Photoanodes for Dye-sensitized Solar Cells

  • Heo, Sung Yeon;Chi, Won Seok;Kim, Jin Kyu;Lee, Chang Soo;Kim, Jong Hak
    • Rapid Communication in Photoscience
    • /
    • v.2 no.3
    • /
    • pp.82-84
    • /
    • 2013
  • We fabricated dye-sensitized solar cells (DSSCs) with $TiO_2$ nanowire (NW)/nanoparticle (NP) composite and solidified nanogel as the photoelectrode and electrolyte, respectively. $TiO_2$ NWs were generated via pore-infiltration of titanium (IV) isopropoxide (TTIP) into a track-etched polycarbonate membrane with a pore diameter of 100 nm, followed by calcination at $500^{\circ}C$. Energy conversion efficiency of $TiO_2$ NW/NP-based DSSCs was always higher than that of NP-based cells. We attributed this to improved light scattering and electron transport by $TiO_2$ NWs, as verified by intensity modulation photocurrent spectroscopy (IMPS) and intensity modulation photovoltage spectroscopy (IMVS) analyses. Quasi-solid-state DSSCs with NW/NP composites exhibited 5.0% efficiency at 100 $mW/cm^2$, which was much greater than that of NP-based cells (3.2%).

Growth and Characterization of $CulnSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CulnSe_2$ 박막 성장과 특성)

  • 홍광준;이상열;박진성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.445-454
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the CuInSe$_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CuInSe$_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 62$0^{\circ}C$ and 41$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of CuInSe$_2$ single crystal thin films measured from Hall effect fby van der Pauw method are 9.62x10$^{16}$ cm$^{-3}$ , 296$\textrm{cm}^2$/V.s at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuInSe$_2$ single crystal thin film we have found that he values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 6.1 meV and 175.2 meV at 10K, respectively. From the photoluminescence measurement on CuInSe$_2$ single crystal thin film we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton (D$^{\circ}$,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral donor bound excition were 7meV and 5.9meV, respectivity. by Haynes rule, an activation energy of impurity was 50 meV.

  • PDF

Growth and characterization of ZnIn$_2$S$_4$ single crystal thin film using Hot Wall Epitaxy method (Hot Wall Epitaxy (W)에 의한 ZnIn$_2$S$_4$ 단결정 박막 성장과 특성)

  • 윤석진;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.266-272
    • /
    • 2002
  • The stochiometric mixture of evaporating materials for the ZnIn$_2$S$_4$ single crystal thin film was prepared from horizontal furnace. To obtain the ZnIn$_2$S$_4$ single crystal thin film, ZnIn$_2$S$_4$ mixed crystal was deposited on throughly etched semi-insulating GaAs(100) in the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 610 $^{\circ}C$ and 450 $^{\circ}C$, respectively and the growth rate of the ZnIn$_2$S$_4$ single crystal thin film was about 0.5 $\mu\textrm{m}$/hr. The crystalline structure of ZnIn$_2$S$_4$ single crystal thin film was investigated by photo1uminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of ZnIn$_2$S$_4$ single crystal thin film measured from Hall effect by van der Pauw method are 8.51${\times}$10$\^$17/ cm$\^$-3/, 291 $\textrm{cm}^2$/V$.$s at 293 $^{\circ}$K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the ZnIn$_2$S$_4$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 0.0148 eV and 0.1678 eV at 10 $^{\circ}$K, respectively. From the photoluminescence measurement of ZnIn$_2$S$_4$ single crystal thin film, we observed free excition (E$\_$X/) typically observed only in high quality crystal and neutral donor bound exciton (D$^{\circ}$,X) having very strong peak intensity. The full width at half maximum and binding energy of neutral donor bound excition were 9 meV and 26 meV, respectively. The activation energy of impurity measured by Haynes rule was 130 meV.

  • PDF

Growth and Optoelectrical Properties for $AgGaSe_2$ Single Crystal Thin Films ($AgGaSe_2$ 단결정 박막 성장과 광전기적 특성)

  • Hong, Kwang-Joon;You, Sang-Ha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.171-174
    • /
    • 2004
  • The stochiometric $AgGaSe_2$ polycrystalline mixture of evaporating materials for the $AgGaSe_2$ single crystal thin film was prepared from horizontal furnace. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal and semi-insulating GaAs(100) wafer were used as source material and substrate for the Hot Wall Epitaxy (HWE) system, respectively. The source and substrate temperature were fixed at $630^{\circ}C$ and $420^{\circ}C$, respectively. The thickness of grown single crystal thin films is $2.1{\mu}m$. The single crystal thin films were investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of $AgGaSe_2$ single crystal thin films measured from Hall effect by van der Pauw method are $4.89{\times}10^{17}\;cm^{-3},\;129cm^2/V{\cdot}s$ at 293K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the $AgGaSe_2$ single crystal thin film, we have found that the values of spin orbit splitting ${\Delta}S_o$ and the crystal field splitting ${\Delta}C_r$ were 0.1762 eV and 0.2494 eV at 10 K, respectively. From the photoluminescence measurement of $AgGaSe_2$ single crystal thin film, we observed free excition $(E_X)$ observable only in high quality crystal and neutral bound exciton $(D^o,X)$ having very strong peak intensity And, the full width at half maximum and binding energy of neutral donor bound excition were 8 meV and 14.1 meV, respectively. By Haynes rule, an activation energy of impurity was 141 meV.

  • PDF

Dispersion of nanosized noble metals in $TiO_2$ matrix and their photoelectrode properties ($TiO_2$ 매트릭스에 나노사이즈의 귀금속 분산과 광전극 특성)

  • Yoon, Jong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.251-255
    • /
    • 2009
  • Nanocomposites based on coupling $TiO_2$ matrix with nanosized noble metals (Pt,Au) particles exhibited promising photoelectrode properties. The $M/TiO_2$ (M=Pt,Au) nanocomposite thin films were deposited on quartz and ITO glass substrates using a co-sputtering method. $TiO_2$ in rutile form is the dominant crystalline phase for as-deposited nanocomposite films. Along with heat treatment up to $600^{\circ}C$, XRD peaks of the rutile phase as well as those of noble metal increased in intensity and decreased in width, indicating the growth of crystallites. The anodic photocurrents of $M/TiO_2$ (M=Au,Pt) thin films were observed not only in the UV range but also in the visible light range. The photocurrent of the nanocomnosite films extended to the visible light region by dispersion of nano-sized noble metal in the $TiO_2$ matrix.

Growth and Optoelectric Characterization of $ZnGa_{2}Se_{4}$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)에 의한 $ZnGa_{2}Se_{4}$ 단결정 박막 성장과 광전기적 특성)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.163-166
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the $ZnGa_{2}Se_{4}$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $ZnGa_{2}Se_{4}$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $ZnGa_{2}Se_{4}$ single crystal trun films measured from Hall effect by van der Pauw method are $9.63{\times}10^{17}cm^{-3}$, $296cm^{2}/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c axis of the $ZnGa_{2}Se_{4}$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$ So and the crystal field splitting $\Delta$Cr were 251.9 meV and 183.2 meV at 10 K, respectively. From the photoluminescence measurement on $ZnGa_{2}Se_{4}$ single crystal thin film, we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton $(A^{0},X)$ having very strong peak intensity. Then, the full-width-at -half-maximum(FWHM) and binding energy of neutral acceptor bound excition were 11 meV and 24.4 meV, respectivity. By Haynes rule, an activation energy of impurity was 122 meV.

  • PDF

Growth and Optoelectric Characterization of $CdGa_{2}Se_{4}$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)에 의한 $CdGa_{2}Se_{4}$ 단결정 박막 성장과 광전기적 특성)

  • Hong, Kwang-Joon;Park, Chang-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.167-170
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the $CdGa_{2}Se_{4}$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdGa_{2}Se_{4}$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdGa_{2}Se_{4}$ single crystal thin films measured from Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3},345cm^{2}/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuInSe_{2}$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$ So and the crystal field splitting $\Delta$Cr were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on $CdGa_{2}Se_{4}$ single crystal thin film, we observed free excition (Ex) existing only high Quality crystal and neutral bound exiciton $(D^{0},X)$ having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral donor bound excition were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV.

  • PDF

Light Sensing Characteristics of $BaAl_2O_4$ thin film by RF magnetron sputtering (RF 마그네트론 스퍼터링에 의한 $BaAl_2O_4$:Eu 박막의 광센싱 특성)

  • Kim, Sei-Ki;Kang, Jung-Woo;Kwak, Chang-Gon;Ji, Mi-Jung;Choi, Byung-Hyun;Kim, Young-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.54-54
    • /
    • 2008
  • $Eu^{2+}$, $Nd^{3+}$ co-doped $BaAl_2O_4$ are known as a long afterglow phosphor. We found that $Eu^{2+}$-doped $BaAl_2O_4$ showed ptotoconductivity in the range of UV and visual light. In this study, $BaAl_2O_4$:Eu thin film has been prepared by RF sputtering method and a sensing characteristics to UV and visual light was performed. Only $Eu^{2+}$ and $Nd^{3+}$ co-doped $BaAl_2O_4$ powders and targets for deposition were prepared by a convention solid state method, and the deposition was performed in a reducing $H_2$-Ar mixture gas on Si substrates. The observation of crystalline phase and morphology of the sputtered film were performed using XRD, EDX. The photoluminescence and photocurrent to UV and visual light were measured simultaneously using 300W-Xe solar simulator as a light source. It was confirmed that the photocurrent induced by irradiation of light showed a linear relationship to the light intensity.

  • PDF

Growth and Optoelectric Characterization of CdGa$_2$Se$_4$ Sing1e Crystal Thin Films (Hot Wall Epitaxy (HWE)에 의한 CdGa$_2$Se$_4$ 단결정 박막 성장과 광전기적 특성)

  • 홍광준;박창선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.167-170
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the CdGa$_2$Se$_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CdGa$_2$Se$_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 630$^{\circ}C$ and 420$^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of CdGa$_2$Se$_4$ single crystal thin films measured from Hall erect by van der Pauw method are 8.27x10$\^$17/ cm$\^$-3/, 345 $\textrm{cm}^2$/V$.$s at 293 K, respectively. From the Photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuInSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on CdGa$_2$Se$_4$ single crystal thin film, we observed free excition (E$\_$X/) existing only high quality crystal and neutral bound exiciton (D$\^$0/,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral donor bound excision were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV,

  • PDF

Growth and Optoelectric Characterization of $ZnGa_{2}Se_{4}$ Sing1e Crystal Thin Films (Hot Wall Epitaxy (HWE)에 의한$ZnGa_{2}Se_{4}$단결정 박막 성장과 광전기적 특성)

  • 박창선;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.163-166
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the ZnGa$_2$Se$_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, ZnGa$_2$Se$_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of ZnGa$_2$Se$_4$ single crystal thin films measured from Hall effect by van der Pauw method are 9.63x10$^{17}$ cm$^{-3}$ , 296 $\textrm{cm}^2$/V.s at 293 K, respectively, From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the ZnGa$_2$Se$_4$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$So and the crystal field splitting $\Delta$Cr were 251.9 MeV and 183.2 meV at 10 K, respectively. From the photoluminescence measurement on ZnGa$_2$Se$_4$ single crystal thin film, we observed free excition (E$_{x}$) existing only high quality crystal and neutral bound excition (A$^{0}$ ,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral acceptor bound excition were 11 meV and 24.4 meV, respectivity. By Haynes rule, an activation energy of impurity was 122 meV.on energy of impurity was 122 meV.

  • PDF