• Title/Summary/Keyword: phosphate of ammonium

Search Result 333, Processing Time 0.032 seconds

Study on Phosphate Investment for High Temperature Precision Castings(I);The Effect of Particle size and Distribution of Silica Sand on the characteristics of the Investment (고온정밀주조용 인산염계 매몰재에 관한 연구(I);매몰재의 특성에 미치는 규사의 입도와 입도분포의 영향)

  • Ahn, Ji-Hong;Lee, Jong-Nam
    • Journal of Korea Foundry Society
    • /
    • v.5 no.2
    • /
    • pp.85-96
    • /
    • 1985
  • In order to investigate the effect of particle size and distribution of silica sand on the characteristics of investment, W/P ratio, setting time, temperature change during setting, setting expansion, thermal expansion and compressive strength of the investments were measured. In this experiment, magnesia clinker and mono ammonium phosphate were used as binder, and particle size and distribution of silica sand were classified for convinence into 10 categories. The main results obtained from this investigation were summerized as follows. 1. W/P ratio decreased with increase of particle size and evenness in distribution of sand grain. 2. Setting time decreased with increase of evenness in distribution of sand grain, and temperature during setting increased with evenness in distribution of sand grain. 3. Setting expansion decreased with increase of particle size, while it increased with evenness in distribution of sand grain. 4. Thermal expansion decreased with increase of particle size. 5. Compressive strength increased with increase of particle size and evenness in distribution of sand grain. From above results, G.F.N. 250 sand which contains 30% of 50-100 mesh could be recommended for investment casting.

  • PDF

Plant Analysis Methods for Evaluating Mineral Nutrient

  • Lee, Ye-Jin;Sung, Jwa-Kyung;Lee, Seul-Bi;Lim, Jung-Eun;Song, Yo-Sung;Lee, Deog-Bae;Hong, Suk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.93-99
    • /
    • 2017
  • Analysis of mineral nutrients in plant is required for evaluating diagnosis of plant nutritional status. Pretreatment procedure for the analysis of plant can be varied depending on elements to be analyzed. Wet-digestion is suitable for total nitrogen, phosphate and cations, however, digestion solution including nitric acid is not suitable for nitrogen analysis. Incineration procedure is required to analyze chloride, silicate and total sulfur. After digestion, total nitrogen is analyzed by Kjeldahl method, and phosphate is detected at 470nm by colorimetric analysis with ammonium meta vanadate. Cations and micro elements are determined by titration or colorimetry, also, these elements can be measured by Atomic absorption spectrometer (AAS) or Inductively coupled plasma spectrometer (ICP).

Nutrient Uptake and Growth Kinetics of Chattonella antiqua (Hada) Ono (Raphidophyceae) Isolated from Korea

  • Seo, Kyung-Suk;Lee, Chang-Kyu
    • ALGAE
    • /
    • v.22 no.3
    • /
    • pp.235-240
    • /
    • 2007
  • The red tide-causing flagellate Chattonella anticfua can cause mass fish kills by their clogging in fish gills. Thisstudy examined the nutrient requirements of C. antiqua isolated from Korea. C. anticfua displayed maximum growthat the day five, followed by a decrease in cell density. Nitrate and nitrite were the preferred nitrogen sources, alonewith adenosine diphosphate for phosphorus compounds. In medium that contained ammonium, a significantdecrease in cell density was observed. Half-saturation constants, Ks, calculated from the maximum growth ratewere 4.94 U|M for NC>3 and 0.79 flM for P04. The growth of C. antiqua was not within the function of the N:P ratio (RU= 0.29). With an N:P ratio as low as 10, the increase in cell density was apparent, with a higher division rate. At lev-els above 50 fiM of NaNOg or 8 ;uM of NaHUPCU, the growth rates were somewhat decreased. Phosphate was thelimiting factor for C. antiqua growth since the starvation of phosphate had brought about a rapid decrease in celldensity in semi-continuous culture. Studies about the temporal modification of the efficiency of nitrate or phosphateuptake may be necessary to explain the bloom dynamics of C. antiaua.

Development of Ion-Selective Electrodes for Agriculture

  • Yang-Rae Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.153-153
    • /
    • 2022
  • There is a growing need to develop ion sensors for agriculture. As a result, several technologies have been developed, such as colorimetry, spectrophotometry, and ion-selective electrode (ISE). Among them, ISE has some advantages compared to others. First, it does not require pre-treatment processes and expensive equipment. Second, it is possible for the portable detection system by introducing small-sized electrodes. Finally, real-time and multiple detections of several ions are pursued. It is well-known that N, P, and K nutrients are critical for crop growth. With the development of agriculture techniques, the importance of soil nutrient analysis has attracted much attention for cost-effective and eco-friendly agriculture. Among several issues, minimizing the use of fertilizers is significant through quantitative analysis of soil nutrients. As a result, it is highly important to analyze certain nutrients, such as N (ammonium ion, nitrate ion, nitrite ion), P (dihydrogen phosphate ion, monohydrogen phosphate ion), and K (potassium ion). Therefore, developing sensors for accurate analysis of soil nutrients is highly desired. n this study, several ISEs have been fabricated to detect N, P, and K. Their performance has been intensively studied, such as sensitivity, selectivity coefficient, and concentration range, and compared with commercialized ISEs. In addition, preliminary tests on the in-situ N, P, and K monitoring have been conducted inside the soil.

  • PDF

Water Quality Changes in Wastewater Effluent from the Unsaturated and Saturated Soil Aquifer Treatment(SAT) Columns Simulating Shallow Aquifer (얕은 불포화 및 포화 대수층을 모사한 SAT 토양칼럼에서의 하수처리장 방류수 처리 수질 변화)

  • Cha Woo-Suk;Kim Jung-Woo;Choi Hee-Chul;Won Jong-Ho;Kim In-Soo;Cho Jae-Weon
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.18-24
    • /
    • 2005
  • Water quality changes of wastewater effluent in the shallow aquifier condition was investigated using laboratory unsaturated and saturated SAT columns for over five months. Average DOC removal was 31.9% in the unsaturated SAT column whereas no removal occurred in the saturated SAT column. Under the shallow aquifer condition, nitrification was not completed in the unsaturated SAT column, releasing residual ammonium nitrogen into the saturated SAT column. Short retention time (one day) in the shallow unsaturated SAT column rendered DO of about 2 mg/L to the influent of the saturated SAT column. Phosphate was not removed at all in the unsaturated SAT column while complete removal was achieved in the saturated column. Consequently, organic and inorganic compounds were removed under the shallow aquifer condition as effectively as was in deep aquifer, except for the release of ammonium and relatively high DO into the saturated SAT column.

The Role of Excipients in Iontophoretic Drug Delivery: In vitro Iontophoresis of Isopropamide and Pyridostigmine through Rat Skin and Effect of Ion-pair Formation with Organic Anions

  • Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.41-50
    • /
    • 1993
  • The iontophoretic delivery across rat skin of quaternary ammonium salts (isopropamide: ISP, pyridostigmine: PS), which are positively charged over a wide pH range, was measured ill vitro. The study showed that: (a) iontophoresis significantly enhanced delivery of ISP and PS compared to respective passive transport; (b) delivery of ISP and PS was directly proportional to the applied continuous direct current density over the range of $0-0.69\;mA/cm^2;$ (c) delivery of ISP and PS was also proportional to the drug concentration in the donor compartment over the range of $0-2{\time}l0^{-2}M:$ (d) sodium ion in the donor compartment inhibited the drug transport possibly due to decreasing the electric transference number of the drug; (e) delivery of ISP and PS increased as the pH of the donor solution increased over the pH range 2-7 suggesting permselective nature of the epidermis, and inhibition of the transference number of the drugs by hydronium ion; (f) some organic anions such as taurodeoxycholate, salicylate and benzoate which form lipophilic ion-pair complexes with ISP inhibited the delivery of ISP. The degree of inhibition by the organic anions was linearly proportional to the extraction coefficient $(K_e)$ of ISP from the partition system with each counteranion between phosphate buffer (pH 7.4) and n-octanol. For PS, however, taurodeoxycholate, but not salicylate and benzoate inhibited the iontophoretic delivery. It suggests that not only sodium ion and hydronium ion but also the counteranions which form lipophilic ion-pairs with quaternary ammonium drugs are not favorable components in formulating the donor solution of the drugs to achieve an effective iontophoretic delivery.

  • PDF

Lithium Ion Selective Electrode Based on a Synthetic Neutural Carrier (중성운반체를 이용한 리튬이온 선택 전극)

  • Kim, Jae Sang
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.33-39
    • /
    • 1992
  • THF-based crown-4 of 16-membered rings having tetrahydrofuran unit was synthesized by an acid-catalyzed condensation of furan and acetone followed by hydrogenation in an effort to obtain highly elective ionophores for lithium ions. The new ionophore was compared with previously reported ionophores under similar measurement conditions with the same plasticizer, tris(2-ethylhexyl) phosphate in poly(vinyl chloride)(PVC) membrane electrodes. Separate solution method was used to determine relative selectivity coefficients for the electrode. The selectivity coefficients($K_{LiM}^{POT}$) of lithium over ammonium, alkali and alkaline earth metal ions go from about $2.4{\times}10^{-1}$ to $2.3{\times}10^{-4}$ to working range and pH dependence have also been studied.

  • PDF

Changes in Rice Yield and Soil Properties under Continued Application of Chemical Fertilizer for 50 Years in Paddy Soil (화학비료 50년 연용에 따른 벼수량과 논토양 특성 변화)

  • Yeon, Byeong-Yeol;Kwak, Han-Kang;Song, Yo-Seong;Jun, Hee-Joong;Kim, Chong-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.482-487
    • /
    • 2007
  • This study was conducted to investigate the effect of long-term continuous application of fertilizers for rice cultivation. Changes of physical and chemical properties of paddy soil and the rice yield by continuous application of NPK fertilizers, ammonium sulphate, and urea over fifty years, from 1954 to 2003, were investigated. The rice yield index of each treatment were 100 of NPK plots, 84 of ammonium sulphate plots, 81 of urea plots, and 62 of no fertilizer plots. The variance of yield was large according to the quality of irrigation water. Nutrient uptakes by rice plants in ammonium sulphate and urea plots were significantly smaller than those in NPK plots; 86 and 75% in T-N, 79 and 82% in $P_2O_5$, 64 and 58% in $K_2O$, and 94 and 90% in $SiO_2$, respectively. Bulk density of soil in NPK plots significantly decreased compared to those in no fertilizer, ammonium sulphate, and urea plots, whereas CEC in NPK plots increased compared to other plots. Soil pHs of all plots were higher than that before experiment which was 5.2; 6.0 in no fertilizer, 5.9 in urea and NPK, and 5.4 in ammonium sulphate plots. The available phosphate in soil increased by $2.5mg\;kg^{-1}\;yr^{-1}$ when $70kg\;ha^{-1}$ of P fertilizer applied for rice cultivation, and decreased by $1.8mg\;kg^{-1}\;yr^{-1}$ when no P fertilizer applied.

The Influence of Ammonium-Nitrogen on Anaerobic Microorganisms in Swine Wastewater by Batch-Fermentation. (혐기성 회분식 배양에서 양돈폐수의 NH$_4$-Nitrogen이 혐기성 미생물에 미치는 영향)

  • 김연옥
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.173-178
    • /
    • 1998
  • This study presents the influence of ammonium-nitrogen on microorganisms in swine wastewater. For the anaerobic batch fermentation, two different methods were used. One is the dilution of wastewater with water. The other method is the elimination of ammonium-nitrogen from the wastewater. By addition of MgO into wastewater, non-soluble crystall was formed under alkaline condition as MgNH$_4$PO$_4$6$H_2O$ (MAP). The master culture was adapted in swine wastewater for more than 3 months, in water-dilution method, the dilution of wastewater with 25% water gave us the best result in efficiency of COD removal. Two hundred hours later MAP-treated wastewater showed the efficiency of the COD removal more than 80%. Under same condition obtained none MAP-treated wastewater about 50%. MAP treatment carried out the very effective anaerobic digestion with swine wastewater. The important result in this study is that the low ratio of C:N influenced on anaerobic microorganisms more than high concentration of ammonium nitrogen in swine wastewater. The struvite for the crystallforming has no toxic effect on methanogenic bacteria.

  • PDF

Feasibility Tests on Struvite Production from Liquid Fertilizer by Utilizing Ferronickel Slag and Sewage Sludge Ash (페로니켈슬래그와 하수슬러지소각재를 이용한 액비로부터 스트루바이트 생산 타당성 연구)

  • Kim, Hyeon;Kwon, Gyutae;Jahng, Deokjin
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.316-327
    • /
    • 2018
  • Liquid fertilizers made from livestock manure contain high concentrations of nitrogen and phosphorus and thus are used as a fertilizer. However, excessive use of liquid fertilizer causes eutrophication of agricultural land and nonpoint source pollution. In this study, as a means of lowering the nutrient concentrations, struvite ($MgNH_4PO_4{\cdot}6H_2O$) production from the liquid fertilizer was investigated. When liquid fertilizers produced in Gyeonggido were analyzed, its characteristics differed by region and season, but the phosphorus concentration was commonly lower than that of nitrogen. When $K_2HPO_4$ and $MgCl_2$ were added to the liquid fertilizers, the optimal pH for struvite formation was pH 9.5. For environmentally friendly sources of magnesium and phosphate, ferronickel slag (FNS) and sewage sludge ash (SSA) were suspended in deionized water and extracted by sulfuric acid with various mass ratios. The optimum conditions for extracting FNS and SSA were 4.0 M sulfuric acid and 0.35 mass ratio of sulfuric acid to sewage sludge ash, respectively. For forming struvite, 0.233 L of SSA leachate (SSAL) was added into 0.3 L of liquid fertilizer containing 2,586 mg/L of ammonia and 110 mg/L of phosphate, pH was then adjusted to pH 9.5 using 10 M of NaOH. Afterwards 0.333 L of FNS leachate (FNSL) was added to this mixed solution. After a reaction for 1 hr at room temperature, the remaining concentrations of magnesium, ammonium, and phosphate were less than 50 mg/L, 500 mg/L and 150 mg/L, respectively, and 30 g of precipitates were obtained, most of which were struvite.