DOI QR코드

DOI QR Code

Nutrient Uptake and Growth Kinetics of Chattonella antiqua (Hada) Ono (Raphidophyceae) Isolated from Korea

  • Published : 2007.09.01

Abstract

The red tide-causing flagellate Chattonella anticfua can cause mass fish kills by their clogging in fish gills. Thisstudy examined the nutrient requirements of C. antiqua isolated from Korea. C. anticfua displayed maximum growthat the day five, followed by a decrease in cell density. Nitrate and nitrite were the preferred nitrogen sources, alonewith adenosine diphosphate for phosphorus compounds. In medium that contained ammonium, a significantdecrease in cell density was observed. Half-saturation constants, Ks, calculated from the maximum growth ratewere 4.94 U|M for NC>3 and 0.79 flM for P04. The growth of C. antiqua was not within the function of the N:P ratio (RU= 0.29). With an N:P ratio as low as 10, the increase in cell density was apparent, with a higher division rate. At lev-els above 50 fiM of NaNOg or 8 ;uM of NaHUPCU, the growth rates were somewhat decreased. Phosphate was thelimiting factor for C. antiqua growth since the starvation of phosphate had brought about a rapid decrease in celldensity in semi-continuous culture. Studies about the temporal modification of the efficiency of nitrate or phosphateuptake may be necessary to explain the bloom dynamics of C. antiaua.

Keywords

References

  1. Bourdelais AJ., Tomas c.R., Naar J. Kubanek J. and Baden D.G .. 2002. New fish-killing alga in coastal Delaware produces neurotoxins. Environ. Health Pers. 110: 465-470 https://doi.org/10.1289/ehp.02110465
  2. Cembella AD., Antia N.J. and Harrison P.J. 1984. The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: A multidisciplinary perspective: Part l. CRC Critic. Rev. Microbial. 10: 317-391
  3. Dahl E., Aune T., Tangen K., Castberg T., Gustad E., Naustvoll L., Aasen J., Nguyen L. and Arff J. 2004. Giftalger og algegifter I norske farvann-erfaringer fra de siste fern arene. Havets Milja 91-95 (in Norwegian)
  4. Eppley R.W., Rogers J.N. and McCarthy J.J. 1969. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14: 912-920 https://doi.org/10.4319/lo.1969.14.6.0912
  5. Flynn K.J. and Hipkin C.R. 1999. Interactions between iron, light, ammonium, and nitrate: insights from the construction of a dynamic model of algal physiology. J. Phycol. 35: 1171-1190 https://doi.org/10.1046/j.1529-8817.1999.3561171.x
  6. Hada y. 1974. The flagellate examined from polluted water of the inland sea, Setonaikai. Bull. Plankton Soc. Jap, 20: 20-33
  7. Halligraeff G .. M., Munday B.L., Baden D.G .. and Whitney P.L. 1998. Chattonella marina Raphidophyte bloom associated with mortality of cultured blue fin tuna (Thunnus maccoyii) in South Australia. Harmful Algae 93-96
  8. Imai I. 1989. Cyst formation of the noxious red tide flagellate Chattonella mariana (Raphidophyceae) in culture. Mar. BioI. 103: 235-239 https://doi.org/10.1007/BF00543353
  9. Imai I. 2000. Current problems in classification and identification of marine raphidoflagellates (raphidophycean flagellates): from the view-point of ecological study. Bull. Plankton Soc. Jap. 47: 55-64 (in Japanese)
  10. Imai I., Yamaguchi M. and Watanabe M. 1998. Ecophysiology, life cycle, and bloom dynamics of Chattonella in the Seto Inland Sea, Japan, In: Anderson D.M., Cemballa AD. and Hallegraeff G.M. (eds), Physiological Ecology of Harmful Algal Blooms. Springer-Verlag, Berlin, pp. 95-112
  11. Kahn S., Arakawa O. and Onoue y. 1998. Physiological investigations of a neurotoxin-producing phytoflagellate, Chattonella marina (Raphidophyceae). Aqua. Res. 29: 9-17 https://doi.org/10.1046/j.1365-2109.1998.00928.x
  12. Kim D., Nakamura A, Okamuto T., Komatsu N., Oda T., !ida T., Ishimatsu A and Muramatsu T. 2000a. Mechanism of superoxide anion generation in the toxic red tide phytoplankton Chat ton ella marina: possible involvement of NAD(P)H oxidase. Biochimica Biophysica Acta 1524: 220-227 https://doi.org/10.1016/S0304-4165(00)00161-6
  13. Kim C.S.. Bae H.M., Yun S.J., Cho Y.C. and Kim H.G. 2000b. Ichithyotoxicity of a harmful dinoflagellate Cochlodinium polykrikoides: aspect of hematological responses of fish exposed to algal blooms. J. Fish. Sci. Tech. 3: 111-117
  14. Kuroda A., Nakashima T., Yamaguchi K. and Oda T. 2005. Isolation and characterization of light-dependent hemolytic cytotoxin from harmful red tide phytoplankton Chattonella marina. Compo Biochem. Physiol. 141: 297-305
  15. Lee Y., Lee C.K., Lim W.A, Park Y.T. and Kwon K.Y. 2005. Harmful algal blooms in Korean coastal waters in 2005. (in Korean)
  16. Nakamura Y. 1985a. Ammonium uptake kinetics and interactions between nitrate and ammonium uptake in Chattonella antiqua. J. Ocenograph. Soc. Jap, 41: 33-38 https://doi.org/10.1007/BF02109929
  17. Nakamura Y. 1985b. Kinetics of nitrogen- or phosphorous-limited growth and effects of growth conditions on nutrient uptake in Chattonella antiqua. J. Oceanograph. Soc. Jap, 41: 381-387 https://doi.org/10.1007/BF02109032
  18. Nakamura Y. and Watanabe M.M. 1983. Growth characteristics of Chattonella antiqua: Part 2. Effects of nutrients on growth. J. Oceanograph. Soc. Jap. 39: 151-155 https://doi.org/10.1007/BF02070258
  19. Nakamura Y., Umemori T. and Watanabe M. 1989. Chemical environment for red tides due to Chattonella antiqua: Part 2. Daily monitoring of the marine environment throughout the outbreak period. J. Oceanograph. Soc. Jap. 45: 116-128 https://doi.org/10.1007/BF02108885
  20. Oh S.J., Yamamoto T., Kataoka Y., Matsuda O., Matsuyama Y. and Kotani Y. 2002. Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium caienaium (Dinophyceae). Fish. Sci. 68: 416-424 https://doi.org/10.1046/j.1444-2906.2002.00440.x
  21. Park J.S., Kim T.A, Lee S.K. and Kim H.K.1987. Study on redtide occurrence and its succession in Korea. 69th Report of National Fisheries Research & Development Institute, Busan, Korea (in Korean)
  22. Sako Y., Otake I. and Uchida A. 2000. The harmful algae Chationella antiqua, C. marina and C. ovata (Raphidophyceae) are phylogenetically the same species. 9th Tasmania ConierenceIor Harmful Algal Blooms (Abstract)
  23. Seo K.S. and Fritz L. 2000. Cell-wall morphology correlated with vertical migration in the non-motile marine dinoflagellate Pyrocystis noctiluca. Mar. Bioi. 137: 589-594 https://doi.org/10.1007/s002270000374
  24. Smayda T.J. 1988. Ecophysiology and bloom dynamics of Heterosigma akashiwo (Raphidophyceae). In: Anderson D.M., Cemballa A.D. and Hallegraeff C.M. (eds), Physiological Ecology of Harmful Algal Blooms, SpringerVerlag, Berlin, pp. 113-131
  25. Stein J.R. 1973. Handbook of Phycological Methods. Cambridge University Press, London
  26. Strickland J.D.H. and Parsons T.R. 1972. A Practical Handbook of Seawater Analysis. Bull. Fish. Res. Bd. Ottawa, Canada
  27. van Boekel W.H.M. 1991. Ability of Phaeocystis sp. To grow on organic phosphate: direct measurement and prediction with the use of an inhibition constant. J. Plankton Res. 13: 959-970 https://doi.org/10.1093/plankt/13.5.959
  28. Yamaguchi M. and Imai I. 1994. A micro flu oro metric analysis of nuclear DNA at different stages in the life history of Chattonella antiqua and Chattonella marina (Raphidophyceae). Phycologia 33: 163-170 https://doi.org/10.2216/i0031-8884-33-3-163.1
  29. Yamaguchi M. and Itakura S. 1999. Nutrition and growth kinetics in nitrogen- or phosphorus-limited cultures of the noxious red tide dinoflagellate Gymnodinium mikimotoi. Fish. Sci. 65: 367-373 https://doi.org/10.2331/fishsci.65.367
  30. Yamaguchi M., Itakura S. and Uchida T. 2001. Nutrition and growth kinetics in nitrogen- or phosphorus-limited cultures of the 'novel red tide' dinoflagellate Heterocapsa circularisquama (Dinophyceae). Phycologia 40: 313-318 https://doi.org/10.2216/i0031-8884-40-3-313.1
  31. Yamaguchi M., Itakura S., Nagasaki K., Matsuyama Y, Uchida T. and Imai I. 1997. Effects of temperature and salinity on the growth of the red tide flagellates Heterocapsa circularisquama (Dinophyceae) and Chattonella verruculosa (Raphidophyceae). J. Plankton Res. 19: 1167-1174 https://doi.org/10.1093/plankt/19.8.1167
  32. Yamamoto T. and Tarutani K. 1999. Growth and phosphate uptake kinetics of the toxic dinoflagellate Alexandrium tamarense from Hiroshima Bay in the Seto inland sea, Japan. Phycol. Res. 47: 27-32 https://doi.org/10.1111/j.1440-1835.1999.tb00280.x
  33. Yamamoto T., Tarutani K., Kawahara M. and Oh S.J. 1999. Utilization and excretion of dissolved organic phosphorus by Alexandrium tamarense (Hiroshima Bay Strain). J. Faculty Appl. Bioi. Sci. Hiroshima Univ. 38: 151-159 (in Japanese)
  34. Yamamoto T., Oh S.J. and Kataoka Y. 2004. Growth and uptake kinetics for nitrate, ammonium and phosphate by the toxic dinoflagellate Gymnodinium catenatum isolated from Hiroshima Bay. rap. Fish. Sci. 70: 108-115 https://doi.org/10.1111/j.1444-2906.2003.00778.x

Cited by

  1. The Effect of Environmental Factors on the Advent of Chattonella (Raphidophyceae) in Yeosu Coastal Waters, Korea, and the Effect of Nutrients on the Growth of Chattonella vol.43, pp.4, 2010, https://doi.org/10.5657/kfas.2010.43.4.362