• Title/Summary/Keyword: phosphate inhibitor

Search Result 150, Processing Time 0.026 seconds

Fermentation of MR-387A and B, Novel Aminopeptidase M Inhibitors by Streptomyces sp. SL-387: Phosphate Repression of Inhibitor Formation

  • YUNG-HEE KHO;CHUNG, MYUNG-CHUL;HYO-KON CHUN;HO-JAE LEE;CHOONG-HWAN LEE,;SU-IL KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.213-217
    • /
    • 1995
  • The effect of inorganic phosphate on the fermentative production of aminopeptidase M inhibitors MR-387A and B by Streptomyces sp. SL-387 has been studied. With inorganic phosphate concentrations higher than 0.78 mM, an inverse correlation was found between the maximum inhibitor production and the initial phosphate concentration added. Growth sensitivity of this actinomycete to arsenate, a phosphate analogue, and the use of magnesium carbonate, a phosphate-trapping agent, suggested that the inhibitor formation was under phosphate repression. Exogenous ATP further increased the degree of phosphate interference in both phosphate-repressed and non repressed culture conditions. The use of a phosphate analogue and a protein synthesis inhibitor also suggested that the phosphate itself repressed inhibitor formation.

  • PDF

Mitigation of Steel Rebar Corrosion Embedded in Mortar using Ammonium Phosphate Monobasic as Hreen Inhibitor (제 1 인산 암모늄 사용량에 따른 시멘트 모르타르의 철근방청성능 평가에 관한 실험적 연구)

  • Tran, Duc Thanh;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.112-113
    • /
    • 2021
  • Phosphate based inhibitor is playing a decisive role in inhibiting the corrosion of steel rebar in chloride condition. We have used different amount of ammonium phosphate monobasic (APMB) as corrosion inhibitor in mortar with different amount of chloride ions. The compressive strength, flexural strength, open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization resistance (PPR), scanning electron microscopy (SEM) and Raman spectroscopy were performed to access the effect of inhibitor on corrosion resistance. As the amount of inhibitor is increased, the compressive strength increased. The electrochemical results show that as the amount of inhibitor and chloride ions are increased, the total impedance and corrosion resistance of steel rebar increased attributed to the formation of the stable oxide films onto the steel rebar surface. It is suggested that APMB can work in high concentration of chloride ions present in concrete where phosphate ion helps in formation of stable and protective phosphate based oxide film.

  • PDF

The Effect of Corrosion Inhibitor on Corrosion Control of Copper Pipe and Green Water Problem

  • Lee, Ji-Eun;Lee, Hyun-Dong;Kim, Gi-Eun
    • Environmental Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.17-25
    • /
    • 2012
  • Concern about green water problem has surfaced as a serious issue in Korea. In order to solve this problem, it is necessary to research inhibition of green water and corrosion control of copper pipe in water service. This paper discovered that moderate corrosion inhibitors can solve the green water problem and copper corrosion in water service by adding the optimal concentration of corrosion inhibitors based on regulation. Firstly, in the case of phosphate based corrosion inhibitors, as dosage of the corrosion inhibitor increases from 1 mg/L to 5 mg/L, the relative effect of corrosion inhibitor declines rapidly. Secondly, except for 1 mg/L dosage of silicate based inhibitor, relative effects of the inhibitor displays a positive number depending on inhibitor concentration. The most significant result is that the amount of copper release shows a downward trend, whereas the phosphate based inhibitor accelerates copper ion release as the inhibitor dosage increases. Thirdly, as the dosage of mixed inhibitors increases to 10 mg/L, the copper release change shows a similar trend of phosphate based inhibitor. Lastly, according to the Langelier saturation index (LI), silicate based inhibitors have the most non corrosive value. Larson ratio (LR) indicates that phosphate based inhibitors are the least corrosive. Korea water index (KWI) represents that silicate based inhibitors are most effective in controlling copper pipe corrosion.

Adsorption rate of Phosphate Corrosion Inhibitor in Carbon Steel pipe (탄소강관에서의 인산염 부식억제제농도 감소의 반응속도상수 평가)

  • Woo, Dalsik;Hwang, Byunggi
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.1
    • /
    • pp.17-24
    • /
    • 2005
  • This study was performed to evaluate the adsorption rate of phosphate corrosion inhibitor and reaction rate constant in drinking water distribution systems. The optimum concentration of corrosion inhibitor would vary depending on the quality of water, pipe materials, and condition of metal surfaces. The current adsorption study indicated that the residual phosphate concentration of the corrosion inhibitor decreased with the time as it adsorbed on the surface of pipe material. As time went by, the residual phosphate concentration became constant. It means that the formation of the corrosion protection film on metal surfaces is completed.

Isolation and Cultivation of Microorganism Producing Lipoxygenase Inhibitor (Lipoxygenase Inhibitor를 생산하는 미생물의 분리 및 배양)

  • 황지숙;정영기이태호
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.375-381
    • /
    • 1993
  • The microorganisms producing a lipoxygenase inhibitor were screened from a wide variety of sources. The isolated strain was assigned to genus Penicillium by its cultural and morphological characteristics. The proper medium for the production of lipoxygenase inhibitor was composed of glucose 3.0%, ammonium sulfate 0.4%, and potassium phosphate (dibasic) 0.1%. The cultivation for lipoxygenase inhibitor production was carried out in 500m1 Erlenmyer flasks containing 100m1 of the medium at $30^{\circ}C$ by cultivating reciprocally. The highest lipoxygenase inhibitor production was observed after 8 days of cultivation. The inhibitor was the low molecular weight substance and inhibited specifically soybean origin lipoxygenase.

  • PDF

Inorganic Phosphate Has the Inhibitory Effect on Phosphotyrosyl Phosphatase Activity of Alkaline Phosphatase in Rabbit Plasma (인산에 의한 토끼 혈장 Alkaline Phosphatase의 Phosphotyrosyl Phosphatase 활성 저해)

  • Lee, Kyung Tae;Seo, Soong Hoon;Kim, Dong Hyun
    • Korean Journal of Clinical Pharmacy
    • /
    • v.9 no.1
    • /
    • pp.62-65
    • /
    • 1999
  • Inorganic phosphate (Pi) in rabbit plasma was found to block completely phosphotyrosine phosphatase (PTPase) activity without affecting the alkaline phosphatase (ALPase) activity. Our results provided that (1) PTPase activity and inhibitor are separated after G-25 gel-filtration. (2) This inhibitor is heat stable and trypsin-resistant and it can be removed by dialysis using 3 Kd cut-off tubing. (3) The elution pattern of the inhibitor is identical to that of Pi, and by performing a seperate run with inorganic phosphate. (4) The PTPase activity was recovered following an incubation with $CaCl_2$ (10 mM).

  • PDF

Role of zinc for calcification inhibitor protein in vascular smooth muscle cell plaque formation (혈관 플라그 형성 저해단백질에 대한 아연의 기능)

  • Shin, Mee-Young;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • v.49 no.1
    • /
    • pp.59-62
    • /
    • 2016
  • Purpose: Zinc, a biomineral present within and outside cells, manages various cellular mechanisms. In this study, we examined whether zinc was involved in vascular smooth muscle cell (VSMC) calcification via regulation of calcification inhibitor protein, osteopontin (OPN). Methods: Rat aorta cell line (A7r5 cells) and primary vascular smooth muscle cells (pVSMCs) from rat aorta were cultured with phosphate (1-5 mM) and zinc ($0-15{\mu}M$) as appropriate, along with osteoblasts (MC3T3-E1) as control. The cells were then stained for Ca and P deposition for calcification examination as well as osteopontin expression as calcification inhibitor protein was measured. Results: Both Ca and phosphate deposition increased as the addition of phosphate increased. In the same manner, the expression of osteopontin was upregulated as the addition of phosphate increased in both cell types. When zinc was added, Ca and P deposition decreased in VSMCs, while it increased in osteoblasts. Conclusion: The results imply that zinc may prevent VSMC calcification by stimulating calcification inhibitor protein OPN synthesis in VSMCs.

A study on the corrosion characteristics of carbon steel pipes by phosphate corrosion inhibitor (인산염계 부식억제제에 의한 탄소강관의 부식특성 연구)

  • Woo, Dal-Sik;Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.493-499
    • /
    • 2008
  • This study was performed to estimate the water quality parameters on corrosion such as pH, turbidity, Fe released concentration, corrosion rate by using batch reactor for corrosion control of phosphate corrosion inhibitor in carbon steel pipes. The pH, conductivity, alkalinity, and Ca hardness showed a slight change for dosing the phosphate corrosion inhibitor with carbon steel pipe in batch reactor. The turbidity was about ten times lower with 5 mg $P_2O_5/L$ of the corrosion inhibitor than that without. The Fe released concentration and corrosion rate was decreased by about 12.2, 24 times with 5 mg $P_2O_5/L$ of the corrosion inhibitor than that without. In conclusion, the optimum concentration of the phosphate corrosion inhibitor was found to be 5 mg $P_2O_5/L$. The effect of the corrosion inhibitor was significant for the carbon steel plate samples tested in this study. The corrosion inhibitor can be an effective cure for corrosion and red water problem preventing the service pipe from further corrosion.

The Effects of Polyphosphate Corrosion Inhibitor and Lime Water to Reduce Red Water for Carbon Steel (탄소강의 녹물저감에 대한 인산염부식억제제와 석회수 효과 연구)

  • Park, Young-Bog;Kong, Sung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.228-237
    • /
    • 2005
  • The main purpose of this study was to investigate the red water reducing effects of phosphate based inhibitor when it was applied to water distribution system. The effects of pH, alkalinity, calcium concentration in the reduction of the red water also studied. The most finished water in Korea showed relatively high corrosiveness and was required to introduce some types of corrosion reducing methods such as addition of alkalinity. The precipitation of $CaCO_3$ by addition of $Ca(OH)_2$ formed porous film on the surface of the carbon steel pipes and was displaced easily from the surface of the pipes; on the other hand, addition of zinc phosphate (ZOP) formed reliable film on the surface and reduced iron release and color. Although the main function of ZOP was to suppress the release of Pb and Cu, it also reduced iron concentration released from water distribution pipes.

Effect of Phosphate-based Inhibitors on Pipe Corrosion of Drinking Water Supply (상수도 배급수관망의 부식방지를 위한 인산염계 방청제 적용에 관한 연구)

  • 이윤진;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.65-71
    • /
    • 2003
  • The injection concentration of corrosion inhibitor increases under the pH 7, temperature of 2$0^{\circ}C$, and alkalinity of 35 mg/l (as CaCO$_3$), the corrosion rate gradually decreased. When the corrosion inhibitor of 10 mg/l is injected, the corrosion rate for carbon steel pipe, galvanized steel pipe, and copper pipe reduces for 37, 66 and 61 % respectively that it is more efficient on galvanized steel pipe and copper pipe. As a result of examination of corrosion rate at pH 6, 7, and 8 when injecting 10 mg/l of corrosion inhibitor under the conditions of 2$0^{\circ}C$ in water temperature and 35 mg/l (as CaCO$_3$) in alkalinity, the efficiency of the corrosion inhibitor increases as the pH increases. For carbon steel pipe, it does not show much a difference with the change of the pH condition, but galvanized steel pipe and copper pipe clearly show the corrosion rate depending on the change of the pH condition. The efficiency of corrosion inhibitor is low as the concentration of residual chlorine is high, but it does not show a great influence at 0.4 mg/l or less. For each pipe type, in the case of carbon steel pipe, the range of increase of corrosion speed following the residual chloride is higher than the other pipe types. In the meantime, the effect following the residual chlorine in copper pipe is low.