• Title/Summary/Keyword: phosphate capacity

Search Result 289, Processing Time 0.027 seconds

The Electrochemical Performance of Li3V2(PO4)3/Graphene Nano-powder Composites as Cathode Material for Li-ion Batteries

  • Choi, Mansoo;Kim, Hyun-Soo;Lee, Young Moo;Jin, Bong-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.109-114
    • /
    • 2014
  • The $Li_3V_2(PO_4)_3$/graphene nano-particles composite was successfully synthesized by a facile sol-gel method. The addition of a graphene in $Li_3V_2(PO_4)_3(LVP)$(LVP) showed the high crystallinity and influenced the morphology of the $Li_3V_2(PO_4)_3$ particles observed in X-ray diffraction (XRD) and scanning electron microscopy (SEM). The LVP/graphene samples were well connected, resulting in fast charge transfer. The effect of the addition graphene nano-particles on electrochemical performance of the materials was investigated. Compared with the pristine LVP, the LVP/graphene composite delivered a higher discharge capacity of $122mAh\;g^{-1}$ at 0.1 C-rate, better rate capability and cyclability in the potential range of 3.0-4.3 V. The electrochemical impedance spectra (EIS) measurement showed the improved electronic conductivity for the LVP/graphene composite, which can ensure the high specific capacity and rate capability.

The Origin of the Residual Carbon in LiFePO4 Synthesized by Wet Milling

  • Park, Sung-Bin;Park, Chang-Kyoo;Hwang, Jin-Tae;Cho, Won-Il;Jang, Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.536-540
    • /
    • 2011
  • This study reports the origin of the electrochemical improvement of $LiFePO_4$ when synthesized by wet milling using acetone without conventional carbon coating. The wet milled $LiFePO_4$ delivers 149 $mAhg^{-1}$ at 0.1 C, which is comparable to carbon coated $LiFePO_4$ and approximately 74% higher than that of dry milled $LiFePO_4$, suggesting that the wet milling process can increase the capacity in addition to conventional carbon coating methods. UV spectroscopy, elemental microanalysis, and evolved gas analysis are used to find the root cause of the capacity improvement during the mechanochemical reaction in acetone. The analytical results show that the improvement is attributed to the conductive residual carbon on the surface of the wet milled $LiFePO_4$ particles, which is produced by the reaction of $FeC_2O_4{\cdot}2H_2O$ with acetone during wet milling through oxygen deficiency in the precursor.

Development of Polymeric Adsorbents for the Treatment of Colored Waste Waters and It's Applications ―Diethylaminoethylated Cellulosic Adsorbents― (유색배수 처리를 위한 고분자흡착제의 개발과 그 응용(III) ―디에틸아미노에틸화 셀룰로오스계 흡착제―)

  • Choe, Ji Eun;Sung, Woo Kyung;Lee, Mee Kyung;Park, Soo Min
    • Textile Coloration and Finishing
    • /
    • v.5 no.4
    • /
    • pp.42-48
    • /
    • 1993
  • In the present work, decoloring of acid dye solution by the diethylaminoethylated cellulosic adsorbents($CA_{DASE}$) was studied with the aim of developing polymeric adsorbents for the treatment of colored wastewaters. To prepare the cellulosic adsorbents, the $CA_{DASE}$ cellulose and polyvinyl alcohol mixture(80 wt% cellulose content) were crosslinked by tryacryloyl hexahydro-s-tryazine(TAHHT), ammonium phosphate and then treated with solutions containing sodium hydroxide and 2-diethylaminoethyl chloride. Batch and flow method were employed to determine decoloring capacity of C $A_{DEAE}$ for C.I.acid yellow 49. $CA_{DASE}$ exhibited much better desorption capacity than activated carbon. Furthermore, the exhausted $$CA{DASE} could be readily regenerated by washing with dilute sodium hydroxide.

  • PDF

Ketorolac Ester Enhancer-prodrugs: Preparation and Evaluation of Their Physicochemical Properties

  • Yun, Sung-Il;Kim, Jung-Sun;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.6
    • /
    • pp.405-412
    • /
    • 2008
  • Six ester analogues of Ketorolac were synthesized as potential enhancer prodrugs for transdermal delivery. Solubility of these esters was determined in 10% propylene glycol (PG)/isotonic phosphate buffer (IPB) at room temperature while lipophilicity was obtained as partition coefficients (log P) and capacity factors (k') using HPLC. Stability of the prodrugs in skin extract and in plasma was investigated at $37^{\circ}C$. The lipophilicity of the potential prodrugs increased in proportion to their alkyl chain length. Good linear relationship between partition coefficients (log P) and capacity factors (log k') was observed ($R^2=0.9961$). All of the analogues were fairly stable but slowly degraded in IPB over a 12 hour period. However, their stability in skin extract and in plasma varied with most compounds gradually decomposing over a 12 hour period. Although unsaturation of the alkyl ester chain did not alter the over all lipophilicity of the compound, the half-life was significantly affected. In plasma, degradation of the esters was slower than in the skin extract, which is a desirable trait for enhancer-prodrugs. However, the overall hydrolysis in the skin extract needs to be facilitated for the development of an effective enhancer prodrug. The analogue with the shortest half life in the skin extract was the unsaturated C-12 analogue of 0.96 hr.

Li Ion Diffusivity and Improved Electrochemical Performances of the Carbon Coated LiFePO4

  • Park, Chang-Kyoo;Park, Sung-Bin;Oh, Si-Hyung;Jang, Ho;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.836-840
    • /
    • 2011
  • This study examines the effects of a carbon coating on the electrochemical performances of $LiFePO_4$. The results show that the capacity of bare $LiFePO_4$ decreased sharply, whereas the $LiFePO_4$/C shows a well maintained initial capacity. The Li ion diffusivity of the bare and carbon coated $LiFePO_4$ is calculated using cyclic voltammetry (CV) to determine the correlation between the electrochemical performance of $LiFePO_4$ and Li diffusion. The diffusion constants for $LiFePO_4$ and $LiFePO_4$/C measured from CV are $6.56{\times}10^{-16}$ and $2.48{\times}10^{-15}\;cm^2\;s^{-1}$, respectively, indicating considerable increases in diffusivity after modifications. The Li ion diffusivity (DLi) values as a function of the lithium content in the cathode are estimated by electrochemical impedance spectroscopy (EIS). The effects of the carbon coating as well as the mechanisms for the improved electrochemical performances after modification are discussed based on the diffusivity data.

Isolation and Characterization of Plant Growth-Promoting Bacteria for the Phytoremediation of Diesel- and Heavy Metal-Contaminated Soil

  • Yun-Yeong Lee;Kyung-Suk Cho
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.484-499
    • /
    • 2023
  • Plant growth-promoting (PGP) bacteria can be used as bioresources to enhance phytoremediation through their PGP traits and pollutant removal capacity. In this study, 49 rhizobacteria were primarily isolated from the rhizosphere of tall fescue grown in diesel- and heavy metal-contaminated soil. Their biosurfactant production, phosphate (P) solubilization, and siderophore production were qualitatively and quantitatively evaluated to identify superior PGP bacteria. The optimal conditions for the growth of PGP bacteria and the stability of their PGP traits were a temperature of 35℃, a pH of 7, and 2 days of cultivation time. Four superior PGP bacteria (Pseudomonas sp. NL3, Bacillus sp. NL6, Bacillus sp. LBY14, and Priestia sp. TSY6) were finally selected. Pseudomonas sp. NL3 exhibited superior biosurfactant production and P solubilization. Bacillus sp. NL6 showed the highest P solubilization and superior production of biosurfactants and siderophores. Bacillus sp. LBY14 offered the best siderophore production and impressive P solubilization. Priestia sp. TSY6 had superior capacity for all three PGP traits. Through their secretion of beneficial PGP metabolites, the four bacteria isolated in this study have the potential for use in the phytoremediation of contaminated soil.

Influence of Lime and Phosphate Application on Amide and Ureide Nitrogen of Soybean Plants and Soil Microorganisms (석회(石灰)와 인산시용(燐酸施用)이 대두식물체중(大豆植物體中) Amide태(態) 및 Ureide태(態) 질소(窒素)와 토양미생물상(土壤微生物相)의 변화(變化)에 미치는 영향(影響))

  • Ko, Jae-Young;Ryu, In-Soo;Lee, Sang-Kyu;Suh, Jang-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.1
    • /
    • pp.69-76
    • /
    • 1991
  • A pot experiment was conducted to find out the effects of lime and phosphate application on the changes of number of soil microorganisms, indigenous Rhizobium japonicum, nodule formation, and ureide-and amide-N in leaf and stem exudate of soybean plant under uncultivated hillside red earth in very low pH value, organic matter, available phosphate, and cation exchange capacity. The results obtained were summarized as follows : 1. The plant height, stem length, root dry weight and nodule weight were significantly increased with the application of lime and phosphate application than that of control plot. 2. The concentration of amide-N in soybean plant at the 45 days after sowing was obtained as high in order of control>lime> lime+phosphate while the concentration was obtained in order of Iime+phosphate>lime> control at flowering stage 3. However, concentration of ureide-N in the soybean leaf at the 45 days after sowing was obtained as high in order of control>lime>lime+hosphate while reversed concentration was obtained in stem. 4. The number of soil microorgan isms were increased with increase of pH value, available phosphate and soil exchangeable cation. 5. Significantly negative high correlation were obtained with the concentration of Al, Fe in soil and the concentration of amide-and ureide-N in soybean plant at flowering stage while positive correlation was obtained with plant growth and the concentration of ureide-N.

  • PDF

Antioxidant Enzyme Activities and Soil Properties of Healthy and Declining Abies koreana (Wils.) in Mt. Halla (한라산 구상나무 건전개체와 쇠약개체의 항산화효소활성 및 토양특성)

  • Lim, Jong-Hwan;Woo, Su-Young;Kwon, Mi Jeong;Kim, Young Kul
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.14-20
    • /
    • 2007
  • In order to examine the differences in antioxidant enzyme activities which represent defence mechanism to stressful environments, and soil properties between healthy and declining (or unhealthy) trees, we selected three sites, Witseorum, Youngsil and Sungpanak (Jindallebat). Antioxidant enzymes including Ascorbate peroxidase (APX) and Glutathione Reductase (GR), forest soil properties including soil texture, soil pH, organic matter, total nitrogen, available phosphate, cation exchange capacity, exchangeable cation content and nutrient contents in leaves of Abies koreana (Korean fir) trees were analyzed. There were no significant differences between healthy and declining trees in GR activity. However, seasonal difference in antioxidant enzyme activity was observed. GR activity was lower in June and August than that of September. Soil chemical and physical properties of each site showed a tendency that organic content, total nitrogen content, available phosphorus, cation exchange capacity and cation content were lower at the site of declining trees than the site of healthy trees.

Characteristics of Volcanic Ash Soils (화산회토(火山灰土)의 특성(特性)에 관(關)하여)

  • Shin, Yong Hwa;Kim, Hyong Ok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.3
    • /
    • pp.113-119
    • /
    • 1975
  • Volcanic Ash Soils are widely distributed in Jeju island, and constitute the important upland soils which are either presently being cultivated or are suitable for reclaiming. The characteristics of Volcanic Ash Soils according to data made available by previous studies in Jeju and the outside of the country are as following: The most conspicuous mineralogical property is the presence of amorphous mineral colloids. The colloids have large and highly reactive surface to which the common physical and chemical properties are related. Soils are low in bulk density and higher both in porosity and permeability. Accumulation of humus in the upper part of soil is found in great quantity. Cation exchange capacity is high mainly due to high humus content, but the absorbing intensity of ammonium and potassium is weaker than that of crystalline clays. The phosphate absorption coefficient is extremely high and deficiency of minor element may occur both crops and animals. Soils are densely populated with actinomycetes and anaerobic bacteria. Nitrification and activity of urease are distinctly stronger than that of non-Volcanic Ash Soils.

  • PDF

해수-석탄회 상호작용에 의한 미량원소 용출특성:Batch 실험연구

  • 박성민;김강주;황갑수;김진삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.295-298
    • /
    • 2004
  • It was revealed that leaching of elements were partly inhibited because seawater contains plenty of dissolved ions than fresh water. On the other hands, the low activity coefficient and the formation of complex with chloride and sulfate play roles in enhancing element leachability. However, the pH buffaring capacity of seawater is the most important factor that makes the leaching of elements and its chemical behavior in the seawater system different from those in the fresh water environments. In general, the leaching from the weathered ash was smaller than that from the fresh ash. However, it was revealed that the leaching of Si, Fe, Al, Mn, phosphate, and some other elements were independent of ash weathering. They were dependant only on the pH of the solutions.

  • PDF