• Title/Summary/Keyword: phenotypic diversity

Search Result 106, Processing Time 0.022 seconds

Exome and genome sequencing for diagnosing patients with suspected rare genetic disease

  • Go Hun Seo;Hane Lee
    • Journal of Genetic Medicine
    • /
    • v.20 no.2
    • /
    • pp.31-38
    • /
    • 2023
  • Rare diseases, even though defined as fewer than 20,000 in South Korea, with over 8,000 rare Mendelian disorders having been identified, they collectively impact 6-8% of the global population. Many of the rare diseases pose significant challenges to patients, patients' families, and the healthcare system. The diagnostic journey for rare disease patients is often lengthy and arduous, hampered by the genetic diversity and phenotypic complexity of these conditions. With the advent of next-generation sequencing technology and clinical implementation of exome sequencing (ES) and genome sequencing (GS), the diagnostic rate for rare diseases is 25-50% depending on the disease category. It is also allowing more rapid new gene-disease association discovery and equipping us to practice precision medicine by offering tailored medical management plans, early intervention, family planning options. However, a substantial number of patients remain undiagnosed, and it could be due to several factors. Some may not have genetic disorders. Some may have disease-causing variants that are not detectable or interpretable by ES and GS. It's also possible that some patient might have a disease-causing variant in a gene that hasn't yet been linked to a disease. For patients who remain undiagnosed, reanalysis of existing data has shown promises in providing new molecular diagnoses achieved by new gene-disease associations, new variant discovery, and variant reclassification, leading to a 5-10% increase in the diagnostic rate. More advanced approach such as long-read sequencing, transcriptome sequencing and integration of multi-omics data may provide potential values in uncovering elusive genetic causes.

Evaluation of the Genetic Diversities and the Nutritional Values of the Tra (Pangasius hypophthalmus) and the Basa (Pangasius bocourti) Catfish Cultivated in the Mekong River Delta of Vietnam

  • Men, L.T.;Thanh, V.C.;Hirata, Y.;Yamasaki, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.671-676
    • /
    • 2005
  • A total of 50 individual catfish, the Tra (Pangasius hypophthalmus) cultivated in either floating cages (Tra-c) or in ponds (Tra-p) and the Basa (Pangasius bocourti) raised in three floating cages, were collected in two of the Mekong Delta provinces. The caudal fin of each individual fish was used for protein electrophoresis employing the SDS-PAGE method. The one fillet sides were used as a representative sample to determine the dry matter (DM), crude protein (CP), ether extract (EE) and amino acids (AAs). The catfish oil was extracted from the belly fats, and the fatty acid (FA) composition was analyzed. There were 21 bands of the Tra and the Basa. Protein bands of the two varieties were 28.6-33.3% polymorphic, while polymorphic individuals of the Tra ranged from 80.0 to 100.0%, and the Basa was 90.0% polymorphic. The phenotypic diversity (Ho) of the Tra ranged from 1.71 to 1.80, while the Basa ranged as high as 2.14%. Diversity values (H$_{EP}$) for genetic diversity markers were equal in the Tra and the Basa. The sum of the effective number of alleles (SENA) of both varieties ranged from 3.40 to 3.83 for the Basa and the Tra, respectively. The lower values of Ho and SENA, as compared with those of the fresh water prawn (Macrobrachium equidens) in the area, would suggest that the species with the low values will become extinct due to inbreeding; the gene pools of each observed population were below a suitable threshold. Many of the differences in the nutritional values of the Tra-c, the Tra-p and the Basa were measured; their nutrient values were comparable to fishmeal or fish oil. Most of the DM, CP, and EE were higher in the Tra, especially in the Tra-c. The essential AA content, especially that of lysine, was highest in the Tra-c, next highest in the Tra-p, and lowest in the Basa. Therefore, the amino acid patterns were closer to the ideal patterns in the same sequences. In contrast, the essential FAs were concentrated in the Basa fish oil. It was found that suitable selection of parents for seed production is required to avoid inbreeding. Catfish may be valuable sources of nutrition for both humans and animals, and the differences in their nutritional values by variety and/or management must be taken into account.

Gut Bacterial Diversity of Insecticide-Susceptible and -Resistant Nymphs of the Brown Planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) and Elucidation of Their Putative Functional Roles

  • Malathi, Vijayakumar M.;More, Ravi P.;Anandham, Rangasamy;Gracy, Gandhi R.;Mohan, Muthugounder;Venkatesan, Thiruvengadam;Samaddar, Sandipan;Jalali, Sushil Kumar;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.976-986
    • /
    • 2018
  • Knowledge about the gut bacterial communities associated with insects is essential to understand their roles in the physiology of the host. In the present study, the gut bacterial communities of a laboratory-reared insecticide-susceptible (IS), and a field-collected insecticide-resistant (IR) population of a major rice pest, the brown planthopper Nilaparvata lugens, were evaluated. The deep-sequencing analysis of the V3 hypervariable region of the 16S rRNA gene was performed using Illumina and the sequence data were processed using QIIME. The toxicological bioassays showed that compared with the IS population, IR population exhibited 7.9-, 6.7-, 14.8-, and 18.7-fold resistance to acephate, imidacloprid, thiamethoxam, and buprofezin, respectively. The analysis of the alpha diversity indicated a higher bacterial diversity and richness associated with the IR population. The dominant phylum in the IS population was Proteobacteria (99.86%), whereas the IR population consisted of Firmicutes (46.06%), followed by Bacteroidetes (30.8%) and Proteobacteria (15.49%). Morganella, Weissella, and Enterococcus were among the genera shared between the two populations and might form the core bacteria associated with N. lugens. The taxonomic-to-phenotypic mapping revealed the presence of ammonia oxidizers, nitrogen fixers, sulfur oxidizers and reducers, xylan degraders, and aromatic hydrocarbon degraders in the metagenome of N. lugens. Interestingly, the IR population was found to be enriched with bacteria involved in detoxification functions. The results obtained in this study provide a basis for future studies elucidating the roles of the gut bacteria in the insecticide resistance-associated symbiotic relationship and on the design of novel strategies for the management of N. lugens.

The classification and comparison of genetic diversity of genus Malus using RAPD (RAPD를 이용한 능금속 식물종의 계통관계와 유전적 다양성)

  • Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.756-761
    • /
    • 2007
  • Cenus Malus is a long-lived woody species primarily distributed throughout Asia. Many species of this genus are regarded as agriculturally and ecologically important. The phynetics and genetic diversity among eight species of genus Malus were reconstructed using the random amplified polymorphic DNA (RAPD) markers. In a simple measure of intraspecies variability by the percentage of polymorphic bands, the M. micromalus exhibited the lowest variation (34.7%). The M. pumila showed the highest (50.0%). Mean number of alleles per locus (A) ranged from 1.347 to 1.500 with a mean of 1.437. The phenotypic frequency of each band was calculated and used in estimating genetic diversify (H) within species. The mean of H was 0.190 across species, varying from 0.155 to 0.220. In particular, two cultivated species, M. pumila and M. asiatica, had high expected diversity, 0.314 and 0.307, respectively. On a per locus basis, the proportion of total genetic variation due to differences among species ranged from 0.388 to 0.472 with a mean of 0.423, indicating that 42.3% of the total variation was found among species. The phylogenetic tree showed three distinct elates. One includes M. sieversii, M. pumila, and M. asiatica. Another includes three M. baccata taxa. The other includes M. sieboldii, M. floribunsa, and M. micromalus. One variety and one form of M. sieboldii were well separated each other. RAPD markers are useful in germ-plasm classification of genus Malus and evolutionary studies.

Clinical Laboratory Aspect of Carbapenem-Resistant Enterobacteriaceae (카바페넴내성장내세균속균종의 임상검사 측면)

  • Park, Chang-Eun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.1
    • /
    • pp.18-27
    • /
    • 2020
  • The correct distinction of carbapenem-resistant Enterobacteriaceae (CRE) and ccarbapenemase producing Enterobacteriaceae (CPE) and the rapid detection of CPE are important for instituting the correct treatment and management of clinical infections. Screening protocols are mainly based on cultures of rectal swab specimens on selective media followed by phenotypic tests to confirm a carbapenem-hydrolyzing activity, the rapid carbapenem inactivation method, lateral flow immunoassay, the matrix-assisted laser desorption ionization-time-of-flight test and molecular methods. The CPE is accurate for detection, and is essential for the clinical treatment and prevention of infections. A variety of phenotypic methods and gene-based methods are available for the rapid detection of carbapenemases, and these are expected to be routinely used in clinical microbiology laboratories. Therefore, to control the spread of carbapenemase, many laboratories around the world will need to use reliable, fast, high efficiency, simple and low cost methods. Optimal effects in patient applications would require rapid testing of CRE to provide reproducible support for antimicrobial management interventions or the treatment by various types of clinicians. For the optimal test method, it is necessary to combine complementary test methods to discriminate between various resistant bacterial species and to discover the genetic diversity of various types of carbapenemase for arriving at the best infection control strategy.

Comparative genetic analysis of frequentist and Bayesian approach for reproduction, production and life time traits showing favourable association of age at first calving in Tharparkar cattle

  • Nistha Yadav;Sabyasachi Mukherjee;Anupama Mukherjee
    • Animal Bioscience
    • /
    • v.36 no.12
    • /
    • pp.1806-1820
    • /
    • 2023
  • Objective: The present study was aimed primarily for estimating various genetic parameters (heritability, genetic correlations) of reproduction (age at first calving [AFC], first service period [FSP]); production (first lactation milk, solid-not fat, and fat yield) and lifetime traits (lifetime milk yield, productive life [PL], herd life [HL]) in Tharparkar cattle to check the association of reproduction traits with lifetime traits through two different methods (Frequentist and Bayesian) for comparative purpose. Methods: Animal breeding data of Tharparkar cattle (n = 964) collected from Livestock farm unit of ICAR-NDRI Karnal for the period 1990 through 2019 were analyzed using a Frequentist least squares maximum likelihood method (LSML; Harvey, 1990) and a multi-trait Bayesian-Gibbs sampler approach (MTGSAM) for genetic correlations estimation of all the traits. Estimated breeding values of sires was obtained by BLUP and Bayesian analysis for the production traits. Results: Heritability estimates of most of the traits were medium to high with the LSML (0.20±0.44 to 0.49±0.71) and Bayesian approach (0.24±0.009 to 0.61±0.017), respectively. However, more reliable estimates were obtained using the Bayesian technique. A higher heritability estimate was obtained for AFC (0.61±0.017) followed by first lactation fat yield, first lactation solid-not fat yield, FSP, first lactation milk yield (FLMY), PL (0.60±0.013, 0.60±0.006, 0.57±0.024, 0.57±0.020, 0.42±0.025); while a lower estimate for HL (0.38±0.034) by MTGSAM approach. Genetic and phenotypic correlations were negative for AFC-PL, AFC-HL, FSP-PL, and FSP-HL (-0.59±0.19, -0.59±0.24, -0.38±0.101 and -0.34±0.076) by the multi-trait Bayesian analysis. Conclusion: Breed and traits of economic importance are important for selection decisions to ensure genetic gain in cattle breeding programs. Favourable genetic and phenotypic correlations of AFC with production and lifetime traits compared to that of FSP indicated better scope of AFC for indirect selection of life-time traits at an early age. This also indicated that the present Tharparkar cattle herd had sufficient genetic diversity through the selection of AFC for the improvement of first lactation production and lifetime traits.

Semi-domesticated and Irreplaceable Genetic Resource Gayal (Bos frontalis) Needs Effective Genetic Conservation in Bangladesh: A Review

  • Uzzaman, Md. Rasel;Bhuiyan, Md. Shamsul Alam;Edea, Zewdu;Kim, Kwan-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.9
    • /
    • pp.1368-1372
    • /
    • 2014
  • Several studies arduously reported that gayal (Bos frontalis) is an independent bovine species. The population size is shrinking across its distribution. In Bangladesh, it is the only wild relative of domestic cattle and also a less cared animal. Their body size is much bigger than Bangladeshi native cattle and has prominent beef type characters along with the ability to adjust in any adverse environmental conditions. Human interactions and manipulation of biodiversity is affecting the habitats of gayals in recent decades. Besides, the only artificial reproduction center for gayals, Bangladesh Livestock Research Institute (BLRI), has few animals and could not carry out its long term conservation scheme due to a lack of an objective based scientific mission as well as financial support. This indicates that the current population is much more susceptible to stochastic events which might be natural catastrophes, environmental changes or mutations. Further reduction of the population size will sharply reduce genetic diversity. In our recent investigation with 80K indicine single nucleotide polymorphism chip, the $F_{IS}$ (within-population inbreeding) value was reported as $0.061{\pm}0.229$ and the observed ($0.153{\pm}0.139$) and expected ($0.148{\pm}0.143$) heterozygosities indicated a highly inbred and less diverse gayal population in Bangladesh. Prompt action is needed to tape the genetic information of this semi-domesticated bovine species with considerable sample size and try to investigate its potentials together with native zebu cattle for understanding the large phenotypic variations, improvement and conservation of this valuable creature.

Prevalence and Molecular Characterization of ESBL Producing Enterobacteriaceae from Highly Polluted Stretch of River Yamuna, India

  • Siddiqui, Kehkashan;Mondal, Aftab Hossain;Siddiqui, Mohammad Tahir;Azam, Mudsser;Haq., Qazi Mohd. Rizwanul
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.2
    • /
    • pp.135-144
    • /
    • 2018
  • The rapid increase in number and diversity of Extended Spectrum ${\beta}$-Lactamases (ESBLs) producing Enterobacteriaceae in natural aquatic environment is a major health concern worldwide. This study investigates abundance and distribution of ESBL producing multidrug resistant Enterobacteriaceae and molecular characterization of ESBL genes among isolates from highly polluted stretch of river Yamuna, India. Water samples were collected from ten different sites distributed across Delhi stretch of river Yamuna, during 2014-15. A total of 506 non duplicate Enterobacteriaceae isolates were obtained. Phenotypic detection of ESBL production and antibiotic sensitivity for 15 different antibiotics were performed according to CLSI guidelines (Clinical and Laboratory Standard Institute, 2015). A subset of ESBL positive Enterobacteriaceae isolates were identified by 16S rRNA gene and screened for ESBL genes, such as $bla_{CTX-M}$, $bla_{TEM}$ and $bla_{OXA}$. Out of 506 non-duplicate bacterial isolates obtained, 175 (34.58%) were positive for ESBL production. Susceptibility pattern for fifteen antibiotics used in this study revealed higher resistance to cefazolin, rifampicin and ampicillin. A high proportion (76.57%) of ESBL positive isolates showed multidrug resistance phenotype, with MAR index of 0.39 at Buddha Vihar and Old Delhi Railway bridge sampling site. Identification and PCR based characterization of ESBL genes revealed the prevalence of $bla_{CTX-M}$ and $bla_{TEM}$ genes to be 88.33% and 61.66%, respectively. Co-occurrence of $bla_{CTX-M}$ and $bla_{TEM}$ genes was detected in 58.33% of the resistant bacteria. The $bla_{OXA}$ gene was not detected in any isolates. This study highlights deteriorating condition of urban aquatic environment due to rising level of ESBL producing Enterobacteriaceae with multidrug resistance phenotype.

Status of Molecular Biotechnology Research Based on Tissue Culture of Soybean (콩 조직배양 기술에 기반한 생명공학 연구 동향)

  • Seo, Mi-Suk;Cho, Chuloh;Choi, Man-Soo;Chun, JaeBuhm;Jin, Mina;Kim, Dool-Yi
    • Korean Journal of Plant Resources
    • /
    • v.33 no.5
    • /
    • pp.536-549
    • /
    • 2020
  • Soybean (Glycine max (L.) Merrill) is one of the most important crops of the world. With the completion of the soybean genome sequence, the Korean soybean core collection consisted of 430 accessions with genetic and phenotypic diversity was constructed in recent year. The availability of genome sequences and core collection will result in the crop improvement by molecular breeding using the various accessions and genome editing approaches. Efficient tissue culture techniques, such as haploid production, protoplast culture and plant regeneration from various organs are essential for the successful molecular biological approach and crop improvement. However, soybean is still considered to be recalcitrant in tissue culture because of the low frequency of regeneration and limitation of available responsive cultivars. In this study, we discuss the recent studies of tissue culture technology and methodology for efficient tissue culture to genetic improvement and application of molecular biotechnology in soybean.

Comparison of Different PCR-Based Genotyping Techniques for MRSA Discrimination Among Methicillin-Resistant Staphylococcus aureus Isolates

  • Kim, Keun-Sung;Seo, Hyun-Ah;Oh, Chang-Yong;Kim, Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.788-797
    • /
    • 2001
  • The usefulness of three PCR methods were evaluated for the epidemiological typing of Staphylococcus aureus: an enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), repetitive extragenic palindromic element PCR (REP-PCR), and 16S-23S intergenic spacer PCR (ITS-PCR). The analysis was performed using a collection of S. aureus strains comprised of 6 reference and 79 isolates from patients with various diseases. Among the 85 S. aureus strains tested, 6 references and 6 isolates were found to be susceptible to methicillin, whereas the remaining 73 isolates were resistant to it. PCR methods are of special concern, as conventional phenotypic methods are unable to clearly distinguish among methicillin-resistant S. aureus (MRSA) strains. The ability of the techniques to detect different unrelated types was found to be as follows: ERIC-PCR, 19 types; REP-PCR, 36 types; and ITS-PCR, 14 types. On the basis of combining the ERIC, REP, and ITS fingerprints, the 85 S. aureus strains were grouped into 56 genetic types (designated G1 to G56). The diversities for the 85 S. aureus strains, calculated according to Simpson\`s index, were 0.88 for an ERIC-PCR, 0.93 for a REP-PCR, and 0.48 for an ITS-PCR, and the diversity increased up to 0.97 when an ERIC-PCR and REP-PCR were combined. The above discrimination indices imply that the genetic heterogeneity of S. aureus strains is high. Accordingly, this study demonstrates that DNA sequences from highly conserved repeats of a genome, particularly a combination of ERIC sequences and REP elements, are a convenient and accurate tool for the subspecies-specific discrimination and epidemiologic tracking of S. aureus.

  • PDF