DOI QR코드

DOI QR Code

Clinical Laboratory Aspect of Carbapenem-Resistant Enterobacteriaceae

카바페넴내성장내세균속균종의 임상검사 측면

  • Park, Chang-Eun (Department of Biomedical Laboratory Science.Molecular Diagnostics Research Institute, Namseoul University)
  • 박창은 (남서울대학교 임상병리학과.분자진단연구소)
  • Received : 2020.02.08
  • Accepted : 2020.02.27
  • Published : 2020.03.31

Abstract

The correct distinction of carbapenem-resistant Enterobacteriaceae (CRE) and ccarbapenemase producing Enterobacteriaceae (CPE) and the rapid detection of CPE are important for instituting the correct treatment and management of clinical infections. Screening protocols are mainly based on cultures of rectal swab specimens on selective media followed by phenotypic tests to confirm a carbapenem-hydrolyzing activity, the rapid carbapenem inactivation method, lateral flow immunoassay, the matrix-assisted laser desorption ionization-time-of-flight test and molecular methods. The CPE is accurate for detection, and is essential for the clinical treatment and prevention of infections. A variety of phenotypic methods and gene-based methods are available for the rapid detection of carbapenemases, and these are expected to be routinely used in clinical microbiology laboratories. Therefore, to control the spread of carbapenemase, many laboratories around the world will need to use reliable, fast, high efficiency, simple and low cost methods. Optimal effects in patient applications would require rapid testing of CRE to provide reproducible support for antimicrobial management interventions or the treatment by various types of clinicians. For the optimal test method, it is necessary to combine complementary test methods to discriminate between various resistant bacterial species and to discover the genetic diversity of various types of carbapenemase for arriving at the best infection control strategy.

카바페넴내성장내세균속균종(carbapenem-resistant Enterobacteriaceae, CRE)과 카바페넴분해효소 생성 장내세균과(carbapenemase-producing Enterobacteriaceae, CPE)의 정확한 구분과 CPE의 빠른 탐지는 임상 감염의 치료 및 관리에 중요하다. 선별방법은 주로 선택적 배지에서의 직장 면봉 표본 배양 후 카바페넴분해 효소의 활성도, 신속한 카바페넴의 불활성화 방법, 측방유동면역분석(lateral flow immunoassay, LFI), 메트릭스보조레이저 탈착/이온화이온사이클론 공명 질량분석법(matrix assisted laser desorption/ionisation time of flight mass spectrometry, MALDI-TOF MS)을 통해 표현형을 측정하는 분자기반 방법들이다. CRE, 특히 CPE의 적절한 시기에 정확한 탐지는 감염의 임상 치료 및 예방에 필수적이다. 다양한 표현형 검출방법 및 유전자-기반 검출방법이 카바페넴의 신속한 검출을 위해 이용 가능하며, 이들은 임상 미생물학 실험실에서 일상적으로 사용된다. 신속한 처리 시간으로 현장에서 치료를 위한 검사 방법을 사용하는 CRE에 대한 능동적인 감시활동에서 카바페넴분해효소를 생성하는 CRE의 탐지는 중요한 가치를 갖는다. 따라서 카바페넴분해효소의 확산을 통제하기 위해서는 전세계의 많은 검사실에서 신뢰할 수 있고 신속하고 고효율적이며, 간편하고 저비용의 검사법을 사용해야 할 것이다. 환자의 적용에서도 최적의 효과를 가지려면 CRE에 대한 신속한 검사를 통해 항균제의 관리 개입이나 다양한 형태의 임상 의사의 치료에 결정적인 지원을 재현성있게 나타나야 할 것이다. 최적의 검사법을 위해서는 보완되는 검사법을 결합하여 다양한 내성 박테리아 종을 감별하고 다양한 종류의 카바페넴분해효소의 유전적 다양성을 발굴하여 최상의 감염관리 전략을 포괄하는 시스템이 마련되어야 할 것으로 사료된다.

Keywords

References

  1. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215(Suppl 1):28-36. https://doi.org/10.1093/infdis/jiw282
  2. Zasowski EJ, Rybak JM, Rybak MJ. The ${\beta}$-lactams strike back:ceftazidime-avibactam. Pharmacotherapy. 2015;35:755-770. https://doi.org/10.1002/phar.1622
  3. Kock R, Daniels-Haardt I, Becker K, Mellmann A, Friedrich AW, Mevius D, et al. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect. 2018;24:1241-1250. https://doi.org/10.1016/j.cmi.2018.04.004
  4. Vittecoq M, Laurens C, Brazier L, Durand P, Elguero E, Arnal A, et al. VIM-1 carbapenemase-producing Escherichia coli in gulls from southern France. Ecol Evol, 2017;7:1224-1232. https://doi.org/10.1002/ece3.2707
  5. Gautier G, Guillard T, Podac B, Bercot B, Vernet-Garnier V, de Champs C. Detection of different classes of carbapenemases: adaptation and assessment of a phenotypic method applied to Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii, and proposal of a new algorithm. J Microbiol Methods. 2018;147:26-35. https://doi.org/10.1016/j.mimet.2018.02.01
  6. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45:1151-1161. https://doi.org/10.1128/aac.45.4.1151-1161.2001
  7. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-beta-lactamase gene, bla (NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53:5046-5054. https://doi.org/10.1128/aac.00774-09
  8. Chen Z, Wang Y, Tian L, Zhu X, Li L, Zhang B, et al. First report in China of Enterobacteriaceae clinical isolates coharboring blaNDM-1 and blaIMP-4 drug resistance genes. Microb Drug Resist. 2015;21:167-170. https://doi.org/10.1089/mdr.2014.0087
  9. Yang B, Feng Y, McNally A, Zong Z. Occurrence of Enterobacter hormaechei carrying blaNDM-1 and blaKPC-2 in China. Diagn Microbiol Infect Dis. 2018;90:139-142. https://doi.org/10.1016/j.diagmicrobio.2017.10.007
  10. Wang J, Yuan M, Chen H, Chen X, Jia Y, Zhu X, et al. First report of Klebsiella oxytoca strain simultaneously producing NDM-1, IMP-4, and KPC-2 carbapenemases. Antimicrob Agents Chemother. 2017;61:E0877-17. https://doi.org/10.1128/AAC.00877-17
  11. Jorgensen SCJ, Trinh TD, Zasowski EJ, Lagnf AM, Bhatia S, Melvin SM, et al. Real-world experience with ceftazidime-avibactam for multidrug-resistant gram-negative bacterial infections. Open Forum Infect Dis. 2019;6:ofz522. https://doi.org/10.1093/ofid/ofz522
  12. Vourli S, Giakkoupi P, Miriagou V, Tzelepi E, Vatopoulos AC, Tzouvelekis LS. Novel GES/IBC extended-spectrum ${\beta}$-lactamase variants with carbapenemase activity in clinical enterobacteria. FEMS Microbiol Lett. 2004;234:209-213. https://doi.org/10.1111/j.1574-6968.2004.tb09535.x
  13. Carrer A, Poirel L, Eraksoy H, Cagatay AA, Badur S, Nordmann P. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob Agents Chemother. 2008;52:2950-2954. https://doi.org/10.1128/AAC.01672-07
  14. Mairi A, Pantel A, Sotto A, Lavigne JP, Touati A. OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. Eur J Clin Microbiol Infect Dis. 2017;37:587-604. https://doi.org/10.1007/s10096-017-3112-7
  15. Humphries RM, Yang S, Hemarajata P, Ward KW, Hindler JA, Miller SA, et al. First report of ceftazidime-avibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate. Antimicrob Agents Chemother. 2015;59:6605-6607. https://doi.org/10.1128/AAC.01165-15
  16. Zhong H, Wu ML, Feng WJ, Huang SF, Yang P. Accuracy and applicability of different phenotypic methods for carbapenemase detection in Enterobacteriaceae: a systematic review and metaanalysis. J Glob Antimicrob Resist. 2019;pii:S2213-7165(19)30264-4. https://doi.org/10.1016/j.jgar.2019.10.010
  17. Moubareck CA, Hammoudi Halat D, Sartawi M, Lawlor K, Sarkis DK, Alatoom A. Assessment of the performance of CHROMagar KPC and Xpert Carba-R assay for the detection of carbapenem-resistant bacteria in rectal swabs: first comparative study from Abu Dhabi, United Arab Emirates. J Glob Antimicrob Resist. 2019;20:147-152. https://doi.org/10.1016/j.jgar.2019.07.021
  18. Genc O, Aksu E. Chromogenic culture media or rapid immunochromatographic test: which is better for detecting Klebsiella pneumoniae that produce OXA-48 and can they be used in blood and urine specimens. J Microbiol Methods. 2018;148:169-173. https://doi.org/10.1016/j.mimet.2018.04.014
  19. Hinic V, Amrein I, Stammler S, Heckendorn J, Meinel D, Frei R, et al. Comparison of two rapid biochemical tests and four chromogenic selective media for detection of carbapenemase-producing Gram-negative bacteria. J Microbiol Methods. 2017;135:66-68. https://doi.org/10.1016/j.mimet.2017.01.012
  20. Vasoo S, Lolans K, Li H, Prabaker K, Hayden MK. Comparison of the CHROMagarTM KPC, Remel SpectraTM CRE, and a direct ertapenem disk method for the detection of KPC-producing Enterobacteriaceae from perirectal swabs. Diagn Microbiol Infect Dis. 2014;78:356-359. https://doi.org/10.1016/j.diagmicrobio.2013.08.016
  21. Zarakolu P, Day KM, Sidjabat HE, Kamolvit W, Lanyon CV, Cummings SP, et al. Evaluation of a new chromogenic medium, chromID OXA-48, for recovery of carbapenemase-producing Enterobacteriaceae from patients at a university hospital in Turkey. Eur J Clin Microbiol. 2015;34:519-525. https://doi.org/10.1007/s10096-014-2255-z
  22. Perry JD, Naqvi SH, Mirza IA, Alizai SA, Hussain A, Ghirardi S, et al. Prevalence of faecal carriage of Enterobacteriaceae with NDM-1 carbapenemase at military hospitals in Pakistan, and evaluation of two chromogenic media. J Antimicrob Chemother. 2011;66:2288-2294. https://doi.org/10.1093/jac/dkr299
  23. Pence MA, Hink T, Burnham CA. Comparison of chromogenic media for recovery of carbapenemase-producing Enterobacteriaceae (CPE) and evaluation of CPE prevalence at a tertiary care academic medical center. J Clin Microbiol. 2015;53:663-666. https://doi.org/10.1128/JCM.03208-14
  24. Hirsch EB, Chang KT, Zucchi PC, Francoeur DN, Ledesma KR, Tam VH, et al. An evaluation of multiple phenotypic screening methods for Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae. J Infect Chemother. 2014;20:224-227. https://doi.org/10.1016/j.jiac.2013.10.011
  25. Simner PJ, Gilmour MW, DeGagne P, Nichol K, Karlowsky JA. Evaluation of five chromogenic agar media and the Rosco Rapid Carb Screen kit for detection and confirmation of carbapenemase production in Gram-negative bacilli. J Clin Microbiol. 2015;53:105-112. https://doi.org/10.1128/JCM.02068-14
  26. Malli E, Florou Z, Tsilipounidaki K, Voulgaridi I, Stefos A, Xitsas S, et al. Evaluation of rapid polymyxin NP test to detect colistin-resistant Klebsiella pneumoniae isolated in a tertiary Greek hospital. J Microbiol Methods. 2018;153:35-39. https://doi.org/10.1016/j.mimet.2018.08.010
  27. LaBombardi VJ, Urban CM, Kreiswirth BN, Chen L, Osorio G, Kopacz J, et al. Evaluation of Remel Spectra CRE agar for the detection of carbapenem resistant bacteria from rectal swabs obtained from residents of a long-term-care facility. J Clin Microbiol. 2015;53:2823-2826. https://doi.org/10.1128/JCM.00789-15
  28. Kuchibiro T, Komatsu M, Yamasaki K, Nakamura T, Nishio H, Nishi I, et al. Evaluation of the modified carbapenem inactivation method for the detection of carbapenemase-producing Enterobacteriaceae. J Infect Chemother. 2018;24:262-266. https://doi.org/10.1016/j.jiac.2017.11.010
  29. van Almsick V, Ghebremedhin B, Pfennigwerth N, Ahmad-Nejad P. Rapid detection of carbapenemase-producing Acinetobacter baumannii and carbapenem-resistant Enterobacteriaceae using a bioluminescence-based phenotypic method. J Microbiol Methods. 2018;147:20-25. https://doi.org/10.1016/j.mimet.2018.02.004
  30. Bogaerts P, Yunus S, Massart M, Huang TD, Glupczynski Y. Evaluation of the BYG carba test, a new electrochemical assay for rapid laboratory detection of carbapenemase-producing Enterobacteriaceae. J Clin Microbiol. 2016;54:349-358. https://doi.org/10.1128/JCM.02404-15
  31. Salimnia H, Fairfax MR, Lephart PR, Schreckenberger P, DesJarlais SM, Johnson JK, et al. Evaluation of the film array(R) blood culture identification panel: results of a multi-center controlled trial. J Clin Microbiol. 2016;54:687-698. https://doi.org/10.1128/JCM.01679-15
  32. Tato M, Ruiz-Garbajosa P, Traczewski M, Dodgson A, McEwan A, Humphries R, et al. Multisite evaluation of Cepheid Xpert Carba-R assay for the detection of carbapenemase-producing organisms in rectal swabs. J Clin Microbiol. 2016;54:1814-1819. https://doi.org/10.1128/JCM.00341-16
  33. Rocco VG, Intra J, Sarto C, Tiberti N, Savarino C, Brambilla M, et al. Rapid identification of carbapenemase-producing Klebsiella pneumoniae strains by matrix-assisted laser desorption/ionization-time of flight using $Vitek^{(R)}$ mass spectrometry system. Eurasian J Med. 2019;51:209-213. https://doi.org/10.5152/eurasianjmed.2019.18405
  34. Yu J, Liu J, Li Y, Yu J, Zhu W, Liu Y, et al. Rapid detection of carbapenemase activity of Enterobacteriaceae isolated from positive blood cultures by MALDI-TOF MS. Ann Clin Microbiol Antimicrob. 2018;17:22. https://doi.org/10.1186/s12941-018-0274-9
  35. Rapp E, Samuelsen O, Sundqvist M. Detection of carbapenemases with a newly developed commercial assay using matrix assisted laser desorption ionization-time of flight. J Microbiol Methods. 2018;146:37-39. https://doi.org/10.1016/j.mimet.2018.01.008
  36. Dortet L, Agathine A, Naas T, Cuzon G, Poirel L, Nordmann P. Evaluation of the $RAPIDEC^{(R)}$ CARBA NP, the Rapid CARB $Screen^{(R)}$ and the Carba NP test for biochemical detection of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2015;70:3014-3022. https://doi.org/10.1093/jac/dkv213
  37. Kunze N, Moerer O, Steinmetz N, Schulze MH, Quintel M, Perl T. Point-of-care multiplex PCR promises short turnaround times for microbial testing in hospital-acquired pneumonia-an observational pilot study in critical ill patients. Ann Clin Microbiol Antimicrob. 2015;14:33. https://doi.org/10.1186/s12941-015-0091-3
  38. Ledeboer NA, Lopansri BK, Dhiman N, Cavagnolo R, Carroll KC, Granato P, et al. Identification of gram-negative bacteria and genetic resistance determinants from positive blood culture broths by use of the verigene gram-negative blood culture multiplex microarray-based molecular assay. J Clin Microbiol. 2015;53:2460-2472. https://doi.org/10.1128/JCM.00581-15
  39. Wang Y, Wang Y, Zhang L, Liu D, Luo L, Li H, et al. Multiplex, rapid, and sensitive isothermal detection of nucleic-acid sequence by endonuclease restriction-mediated real-time multiple cross displacement amplification. Front Microbiol. 2016;7:753. https://doi.org/10.3389/fmicb.2016.00753
  40. Hu S, Niu L, Zhao F, Yan L, Nong J, Wang C, et al. Identification of Acinetobacter baumannii and its carbapenem-resistant gene blaOXA-23-like by multiple cross displacement amplification combined with lateral flow biosensor. Sci Rep. 2019;9:17888. https://doi.org/10.1038/s41598-019-54465-8
  41. Mathers AJ, Stoesser N, Sheppard AE, Pankhurst L, Giess A, Yeh AJ, et al. Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae at a single institution: insights into endemicity from whole-genome sequencing. Antimicrob Agents Chemother. 2015;59:1656-1663. https://doi.org/10.1128/AAC.04292-14
  42. Cheng C, Zheng F, Rui Y. Rapid detection of blaNDM, blaKPC, blaIMP, and blaVIM carbapenemase genes in bacteria by loop-mediated isothermal amplification. Microb Drug Resist. 2014;20:533-538. https://doi.org/10.1089/mdr.2014.0040
  43. Frickmann H, Masanta WO, Zautner AE. Emerging rapid resistance testing methods for clinical microbiology laboratories and their potential impact on patient management. Biomed Res Int. 2014;2014:375681. https://doi.org/10.1155/2014/375681
  44. Niu H, Zhang W, Wei L, Liu M, Liu H, Zhao C, et al. Rapid nanopore assay for carbapenem-resistant Klebsiella pneumoniae. Front Microbiol. 2019;10:1672. https://doi.org/10.3389/fmicb.2019.01672
  45. Kim JS, Kang GE, Kim HS, Kim HS, Song W, Lee KM. Evaluation of Verigene blood culture test systems for rapid identification of positive blood cultures. Biomed Res Int. 2016;2016:1081536. https://doi.org/10.1155/2016/1081536
  46. Swayne R, Ellington MJ, Curran MD, Woodford N, Aliyu SH. Utility of a novel multiplex TaqMan PCR assay for metallo-$\beta$-lactamase genes plus other TaqMan assays in detecting genes encoding serine carbapenemases and clinically significant extended-spectrum $\beta$-lactamases. Int J Antimicrob. Agents. 2013;42:352-356. https://doi.org/10.1016/j.ijantimicag.2013.06.018
  47. Girlich D, Oueslati S, Bernabeu S, Langlois I, Begasse C, Arangia N, et al. Evaluation of the BD MAX Check-Points CPO Assay for the detection of carbapenemase producers directly from rectal swabs. J Mol Diagn. 2020;22:294-300. https://doi.org/10.1016/j.jmoldx.2019.10.004
  48. Saad Albichr I, Anantharajah A, Dodemont M, Hallin M, Verroken A, Rodriguez-Villalobos H. Evaluation of the automated BD Phoenix CPO detect test for detection and classification of carbapenemases in Gram negatives. Diagn Microbiol Infect Dis. 2020;96:114911. https://doi.org/10.1016/j.diagmicrobio.2019.114911
  49. Byun JH, Seo Y, Kim D, Kim M, Lee H, Yong D, et al. An agar plate-based modified carbapenem inactivation method (p-mCIM) for detection of carbapenemase-producing Enterobacteriaceae. J Microbiol Methods. 2020;168:105781. https://doi.org/10.1016/j.mimet.2019.105781
  50. Jing X, Min X, Zhang X, Gong L, Wu T, Sun R, et al. The rapid carbapenemase detection method (rCDM) for rapid and accurate detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Front Cell Infect Microbiol. 2019;9:371. https://doi.org/10.3389/fcimb.2019.00371
  51. Watahiki M, Kawahara R, Suzuki M, Aoki M, Uchida K, Matsumoto Y, et al. Single-tube multiplex polymerase chain reaction for the detection of genes encoding Enterobacteriaceae carbapenemase. Jpn J Infect Dis. 2019 Nov 29. https://doi.org/10.7883/yoken.JJID.2019.041
  52. Thomson GK, AbdelGhani S, Thomson KS. CPO complete, a novel test for fast, accurate phenotypic detection and classification of carbapenemases. PLoS One. 2019;14:e0220586. https://doi.org/10.1371/journal.pone.0220586
  53. Byun JH, Kim YA, Kim M, Kim B, Choi JY, Park YS. Evaluation of Xpert Carba-R Assay v.2 to detect carbapenemase genes in two hospitals in Korea. Ann Lab Med. 2020;40:209-215. https://doi.org/10.3343/alm.2020.40.3.209
  54. Del Bianco F, Morotti M, Zannoli S, Dirani G, Fantini M, Pedna MF, et al. Comparison of four commercial screening assays for the detection of blaKPC, blaNDM, blaIMP, blaVIM, and blaOXA48 in rectal secretion collected by swabs. Microorganisms. 2019;7:E704. https://doi.org/10.3390/microorganisms7120704
  55. Pinet E, Franceschi C, Collin V, Davin-Regli A, Zambardi G, Pages JM. A simple phenotypic test for detecting the contribution of outer membrane permeability to carbapenem resistance. J Med Microbiol. 2020;69:63-71. https://doi.org/10.1099/jmm.0.001129
  56. Girlich D, Laguide M, Dortet L, Naas T. Evaluation of the $Revogene^{(R)}$ Carba C Assay for detection and differentiation of carbapenemase-producing Gram negative bacteria. J Clin Microbiol. 2020;58:JCM.01927-19. https://doi.org/10.1128/JCM.01927-19

Cited by

  1. Antibiotic Resistance Genes Among Carbapenem-resistant Enterobacterales (CRE) Isolates of Prapokklao Hospital, Chanthaburi Province, Thailand vol.14, 2020, https://doi.org/10.2147/idr.s328521