DOI QR코드

DOI QR Code

Three-Dimensional Approaches in Histopathological Tissue Clearing System

조직투명화 기술을 통한 3차원적 접근

  • Lee, Tae Bok (Confocal Core Facility, Center for Medical Innovation, Seoul National University Hospital) ;
  • Lee, Jaewang (Department of Biomedical Laboratory Science, College of Health Science, Eulji University) ;
  • Jun, Jin Hyun (Department of Biomedical Laboratory Science, College of Health Science, Eulji University)
  • 이태복 (서울대학교병원 의학연구혁신센터 공초점현미경실) ;
  • 이재왕 (을지대학교 보건과학대학 임상병리학과) ;
  • 전진현 (을지대학교 보건과학대학 임상병리학과)
  • Received : 2019.11.29
  • Accepted : 2019.12.30
  • Published : 2020.03.31

Abstract

Three-dimensional microscopic approaches in histopathology display multiplex properties that present puzzling questions for specimens as related to their comprehensive volumetric information. This information includes spatial distribution of molecules, three-dimensional co-localization, structural formation and whole data set that cannot be determined by two-dimensional section slides due to the inevitable loss of spatial information. Advancement of optical instruments such as two-photon microscopy and high performance objectives with motorized correction collars have narrowed the gap between optical theories and the actual reality of deep tissue imaging. However, the benefits gained by a prolonged working distance, two-photon laser and optimized beam alignment are inevitably diminished because of the light scattering phenomenon that is deeply related to the refractive index mismatch between each cellular component and the surrounding medium. From the first approaches with simple crude refractive index matching techniques to the recent cutting-edge integrated tissue clearing methods, an achievement of transparency without morphological denaturation and eradication of natural and fixation-induced nonspecific autofluorescence out of real signal are key factors to determine the perfection of tissue clearing and the immunofluorescent staining for high contrast images. When performing integrated laboratory workflow of tissue for processing frozen and formalin-fixed tissues, clear lipid-exchanged acrylamide-hybridized rigid imaging/immunostaining/in situ hybridization-compatible tissue hydrogel (CLARITY), an equipment-based tissue clearing method, is compatible with routine procedures in a histopathology laboratory.

조직병리학에서 현미경을 이용한 삼차원적 접근법은, 이차원 단면의 조직 슬라이드에서 박절 과정 중 부차적으로 발생하는 공간정보의 손실로 인하여 확인하기 어려웠던, 조직 내부 분자들의 공간적 배열, 상호결합, 구조적인 형태와 이들의 통합적인 공간적 정보체로서, 조직 내에 복잡하게 얽혀진 다양한 정보를 풀어내는데 있어서 복합적인 데이터를 제시하여 준다. 이광자 현미경(two-photon microscope)과 자동화된 보정환(correction collar)이 탑재된 고성능 대물렌즈의 개발과 같은 광학장비 영역의 발전은 조직투명화 과정을 거치지 않은 두꺼운 시료의 이미징에 있어서 광학적인 이론과 실체 사이에 존재하는 격차를 줄이는데 기여하였다고 할 수 있다. 하지만, 대물렌즈의 길어진 작동범위(working distance)와 최적화된 고강도 레이저의 사용으로 얻게 되는 이점들은 세포 내 각 구성요소의 굴절률(refractive index) 차이로 인하여 증가되는 빛의 분산(light scattering) 현상으로 인해 자연스럽게 감소하게 된다. 조직투명화 기술이 처음 등장하였던 초창기 시도되던 간단한 굴절률 일치화(RI matching) 기법에서부터 현대의 최첨단 통합 조직 투명화 기술에 이르기 까지를 관찰하여 볼 때, 형태학적인 변화없이 조직의 투명도를 높이는 것과, 내재적으로 또는 고정과정 중에 유래되어 혼합된 자가형광 노이즈를 효과적으로 제거하는것이 선명한 이미지를 얻기 위한 주요한 고려대상이라고 할 수 있다. CLARITY는 장비에 기반한 조직투명화 기법으로서 임상 조직병리 실험실에서 처리되는 동결절편과 포르말린에 고정된 검체 모두의 투명화를 위한 실험실 작업흐름(workflow) 통합 및 일상적인 실험절차와 호환이 가능할 것으로 보여진다.

Keywords

References

  1. Gradinaru V, Treweek J, Overton K, Deisseroth K. Hydrogel-tissue chemistry: principles and applications. Annu Rev Biophys. 2018;47:355-376. https://doi.org/10.1146/annurev-biophys-070317-032905
  2. Khimchenko A, Deyhle H, Schulz G, Schweighauser G, Hench J, Chicherova N, et al. Extending two-dimensional histology into the third dimension through conventional micro computed tomography. Neuroimage. 2016;139:26-36. https://doi.org/10.1016/j.neuroimage.2016.06.005
  3. Young PA, Clendenon SG, Byars JM, Dunn KW. The effects of refractive index heterogeneity within kidney tissue on multiphoton fluorescence excitation microscopy. J Microsc. 2011;242:148-156. https://doi.org/10.1111/j.1365-2818.2010.03448.x
  4. Marks DL, Chaney EJ, Boppart SA. Plastinated tissue samples as three-dimensional models for optical instrument characterization. Opt Express. 2008;16:16272-16283. https://doi.org/10.1364/oe.16.016272
  5. Jun YW, Kim HR, Reo YJ, Dai M, Ahn KH. Addressing the autofluorescence issue in deep tissue imaging by two-photon microscopy: the significance of far-red emitting dyes. Chem Sci. 2017;8:7696-7704. https://doi.org/10.1039/c7sc03362a
  6. Schnell SA, Staines WA, Wessendorf MW. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem. 1999;47:719-730. https://doi.org/10.1177/002215549904700601
  7. Clancy B, Cauller LJ. Reduction of background autofluorescence in brain sections following immersion in sodium borohydride. J Neurosci Methods. 1998;83:97-102. https://doi.org/10.1016/s0165-0270(98)00066-1
  8. Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 2014;159:896-910. https://doi.org/10.1016/j.cell.2014.10.010
  9. Ariel P. A beginner's guide to tissue clearing. Int J Biochem Cell Biol. 2017;84:35-39. https://doi.org/10.1016/j.biocel.2016.12.009
  10. Gamble JT. A combination bleaching-clearing agent and its use in the processing of Spalteholz preparations. Stain Technol. 1945;20:127. https://doi.org/10.3109/10520294509107147
  11. Eisenstein M. Transparent tissues bring cells into focus for microscopy. Nature. 2018;564:147-149. https://doi.org/10.1038/d41586-018-07593-6
  12. Steinke H, Wolff W. A modified spalteholz technique with preservation of the histology. Ann Anat. 2001;183:91-95. https://doi.org/10.1016/S0940-9602(01)80020-0
  13. Silvestri L, Costantini I, Sacconi L, Pavone FS. Clearing of fixed tissue: a review from a microscopist's perspective. J Biomed Opt. 2016;21:081205. https://doi.org/10.1117/1.JBO.21.8.081205
  14. Azaripour A, Lagerweij T, Scharfbillig C, Jadczak AE, Willershausen B, Van Noorden CJ. A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Prog Histochem Cytochem. 2016;51:9-23. https://doi.org/10.1016/j.proghi.2016.04.001
  15. Vigouroux RJ, Belle M, Chedotal A. Neuroscience in the third dimension: shedding new light on the brain with tissue clearing. Mol Brain. 2017;10:33. https://doi.org/10.1186/s13041-017-0314-y
  16. Ravikumar S, Surekha R, Thavarajah R. Mounting media: an overview. Journal of Dr. NTR University of Health Sciences. 2014;3:1-8. https://doi.org/10.4103/2277-8632.128479
  17. Riederer BM. Plastination and its importance in teaching anatomy. Critical points for long-term preservation of human tissue. J Anat. 2014;224:309-315. https://doi.org/10.1111/joa.12056
  18. Xu Z, Chapuis PH, Bokey L, Zhang M. Denonvilliers' fascia in men: a sheet plastination and confocal microscopy study of the prerectal space and the presence of an optimal anterior plane when mobilizing the rectum for cancer. Colorectal Dis. 2017;20:236-242. https://doi.org/10.1111/codi.13906
  19. Ravi SB, Bhat VM. Plastination: a novel, innovative teaching adjunct in oral pathology. J Oral Maxillofac Pathol. 2011;15:133-137. https://doi.org/10.4103/0973-029X.84475
  20. Wadood AA, Jabbar A, Das N. Plastination of whole brain specimen and brain slices. J Ayub Med Coll Abbottabad. 2001;13:11-13.
  21. Costa EC, Silva DN, Moreira AF, Correia IJ. Optical clearing methods: an overview of the techniques used for the imaging of 3D spheroids. Biotechnol Bioeng. 2019;116:2742-2763. https://doi.org/10.1002/bit.27105
  22. Li L, Zhou Q, Voss TC, Quick KL, LaBarbera DV. High-throughput imaging: focusing in on drug discovery in 3D. Methods. 2016; 96:97-102. https://doi.org/ 10.1016/j.ymeth.2015.11.013
  23. Durr NJ, Weisspfennig CT, Holfeld BA, Ben-Yakar A. Maximum imaging depth of two-photon autofluorescence microscopy in epithelial tissues. J Biomed Opt. 2011;16:026008. https://doi.org/10.1117/1.3548646
  24. Theer P, Denk W. On the fundamental imaging-depth limit in two-photon microscopy. J Opt Soc Am A Opt Image Sci Vis. 2006;23:3139-3149. https://doi.org/10.1364/josaa.23.003139
  25. Libard S, Cerjan D, Alafuzoff I. Characteristics of the tissue section that influence the staining outcome in immunohistochemistry. Histochem Cell Biol. 2019;151:91-96. https://doi.org/10.1007/s00418-018-1742-1
  26. Babic A, Loftin IR, Stanislaw S, Wang M, Miller R, Warren SM, et al. The impact of pre-analytical processing on staining quality for H&E, dual hapten, dual color in situ hybridization and fluorescent in situ hybridization assays. Methods. 2010;52:287-300. https:// doi.org/10.1016/j.ymeth.2010.08.012
  27. Song Y, Treanor D, Bulpitt AJ, Magee DR. 3d reconstruction of multiple stained histology images. J Pathol Inform. 2013;4(Suppl):7. https://doi.org/10.4103/2153-3539.109864
  28. Abels E, Pantanowitz L. Current state of the regulatory trajectory for whole slide imaging devices in the USA. J Pathol Inform. 2017;8:23. https://doi.org/10.4103/jpi.jpi_11_17
  29. Farahani N, Parwani AV, Pantanowitz L. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathol Lab Med Int. 2015;7:23-33. https://doi.org/10.2147/PLMI.S59826
  30. Magee D, Song Y, Gilbert S, Roberts N, Wijayathunga N, Wilcox R, et al. Histopathology in 3D: from three-dimensional reconstruction to multi-stain and multi-modal analysis. J Pathol Inform. 2015;6:6. https://doi.org/10.4103/2153-3539.151890
  31. Tainaka K, Kuno A, Kubota SI, Murakami T, Ueda HR. Chemical principles in tissue clearing and staining protocols for wholebody cell profiling. Annu Rev Cell Dev Biol. 2016;32:713-741. https://doi.org/10.1146/annurev-cellbio-111315-125001
  32. Marmorstein AD, Marmorstein LY, Sakaguchi H, Hollyfield JG. Spectral profiling of autofluorescence associated with lipofuscin, Bruch's membrane, and sub-RPE deposits in normal and AMD eyes. Invest Ophthalmol Vis Sci. 2002;43:2435-2441
  33. Katz ML, Robison WG Jr. What is lipofuscin? Defining characteristics and differentiation from other autofluorescent lysosomal storage bodies. Arch Gerontol Geriatr. 2002;34:169-184. https://doi.org/10.1016/s0167-4943(02)00005-5
  34. Duong H, Han M. A multispectral LED array for the reduction of background autofluorescence in brain tissue. J Neurosci Methods. 2013;220:46-54. https://doi.org/10.1016/j.jneumeth.2013.08.018
  35. Tokumasu F, Dvorak J. Development and application of quantum dots for immunocytochemistry of human erythrocytes. J Microsc. 2003;211:256-261. https://doi.org/10.1046/j.1365-2818.2003.01219.x
  36. Chorvat D Jr, Kirchnerova J, Cagalinec M, Smolka J, Mateasik A, Chorvatova A. Spectral unmixing of flavin autofluorescence components in cardiac myocytes. Biophys J. 2005;89:L55-57. https://doi.org/10.1529/biophysj.105.073866
  37. Seo J, Koo DJ, Kim SY. Chemical processing of brain tissues for large-volume, high-resolution optical imaging. In: Kao FJ, Keiser G, Gogoi A, editors. Advanced optical methods for brain imaging. Singapore: Springer; 2019. p295-334.
  38. Marx V. Microscopy: seeing through tissue. Nat Methods. 2014;11:1209-1214. https://doi.org/10.1038/nmeth.3181
  39. Hama H, Hioki H, Namiki K, Hoshida T, Kurokawa H, Ishidate F, et al. ScaleS: an optical clearing palette for biological imaging. Nat Neurosci. 2015;18:1518-1529. https://doi.org/10.1038/nn.4107
  40. Erturk A, Becker K, Jahrling N, Mauch CP, Hojer CD, Egen JG, et al. Three-dimensional imaging of solvent-cleared organs using 3disco. Nat Protoc. 2012;7:1983-1995. https://doi.org/10.1038/nprot.2012.119
  41. Richardson DS, Lichtman JW. Clarifying tissue clearing. Cell. 2015;162:246-257. https://doi.org/10.1016/j.cell.2015.06.067
  42. Tomer R, Ye L, Hsueh B, Deisseroth K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc. 2014;9:1682-1697. https://doi.org/10.1038/nprot.2014.123
  43. Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen CK, Lubeck E, et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell. 2014;158:945-958. https://doi.org/10.1016/j.cell.2014.07.017
  44. Kim SY, Cho JH, Murray E, Bakh N, Choi H, Ohn K, et al. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc Natl Acad Sci USA. 2015;112:E6274-E6283. https://doi.org/10.1073/pnas.1510133112
  45. Hammouda B. Temperature effect on the nanostructure of sds micelles in water. J Res Natl Inst Stan Technol. 2013;118:151-167. https://doi.org/10.6028/jres.118.008
  46. Jensen KHR, Berg RW. Advances and perspectives in tissue clearing using clarity. J Chem Neuroanat. 2017;86:19-34. https://doi.org/10.1016/j.jchemneu.2017.07.005
  47. Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, et al. Structural and molecular interrogation of intact biological systems. Nature. 2013;497:332-337. https://doi.org/10.1038/nature12107
  48. Lai HM, Liu AK, Ng WL, DeFelice J, Lee WS, Li H, et al. Rationalisation and validation of an acrylamide-free procedure in threedimensional histological imaging. PLos One. 2016;11:E0158628. https://doi.org/10.1371/journal.pone.0158628
  49. Hsueh B, Burns VM, Pauerstein P, Holzem K, Ye L, Engberg K, et al. Pathways to clinical CLARITY: volumetric analysis of irregular, soft, and heterogeneous tissues in development and disease. Sci Rep. 2017;7:5899. https://doi.org/10.1038/s41598-017-05614-4
  50. Seo J, Choe M, Kim SY. Clearing and labeling techniques for large-scale biological tissues. Mol Cells. 2016;39:439-446. https://doi.org/10.14348/molcells.2016.0088 Erratum in; Erratum to: Clearing and labeling techniques for large-scale biological tissues. Mol Cells. 2016;42:96. https://doi.org/10.14348/molcells.2019.1088
  51. Kolodziejczyk E, Baertschi AJ. Multiple immunolabeling in histology: A new method using thermo-inactivation of immunoglobulins. J Histochem Cytochem. 1986;34:1725-1729. https://doi.org/10.1177/34.12.3023476
  52. Wahlby C, Erlandsson F, Bengtsson E, Zetterberg A. Sequential immunofluorescence staining and image analysis for detection of large numbers of antigens in individual cell nuclei. Cytometry. 2002;47:32-41. https://doi.org/10.1002/cyto.10026
  53. Murray E, Cho JH, Goodwin D, Ku T, Swaney J, Kim SY, et al. Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell. 2015;163:1500-1514. https://doi.org/10.1016/j.cell.2015.11.025
  54. Lee E, Sun W. ACT-PRESTO: biological tissue clearing and immunolabeling methods for volume imaging. J Vis Exp. 2016;118:E54904. https://doi.org/10.3791/54904
  55. Lee E, Choi J, Jo Y, Kim JY, Jang YJ, Lee HM, et al. ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3d) imaging. Sci Rep. 2016;6:18631. https://doi.org/10.1038/srep18631 Erratum in; Corrigendum: ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci Rep. 2016;6:31940. https://doi.org/10.1038/srep31940
  56. Umezawa M, Haruguchi S, Fukushima R, Sekiyama S, Kamimura M, Soga K. Rapid increase in transparency of biological organs by matching refractive index of medium to cell membrane using phosphoric acid. RSC Adv. 2019;9:15269-15276. https://doi.org/10.1039/C9RA01445D
  57. Mcmeekin TL, Groves ML, Wilensky M. Refractive indices of proteins in relation to amino acid composition and specific volume. Biochem Bioph Res Co. 1962;7:151-156. https://doi.org/10.1016/0006-291X(62)90165-1
  58. Bolin FP, Preuss LE, Taylor RC, Ference RJ. Refractive-index of some mammalian-tissues using a fiber optic cladding method. Appl Optics. 1989;28:2297-2303. https://doi.org/10.1364/AO.28.002297
  59. Poguzhelskaya E, Artamonov D, Bolshakova A, Vlasova O, Bezprozvanny I. Simplified method to perform clarity imaging. Mol Neurodegener. 2014;9:19. https://doi.org/10.1186/1750-1326-9-19
  60. Rich RM, Stankowska DL, Maliwal BP, Sorensen TJ, Laursen BW, Krishnamoorthy RR, et al. Elimination of autofluorescence background from fluorescence tissue images by use of time-gated detection and the AzaDiOxaTriAngulenium (ADOTA) fluorophore. Anal Bioanal Chem. 2013;405:2065-2075. https://doi.org/10.1007/s00216-012-6623-1
  61. Jones PB, Rozkalne A, Meyer-Luehmann M, Spires-Jones TL, Makarova A, Kumar AT, et al. Two postprocessing techniques for the elimination of background autofluorescence for fluorescence lifetime imaging microscopy. J Biomed Opt. 2008;13:014008. https://doi.org/10.1117/1.2837169
  62. Marcek Chorvatova A, Kirchnerova J, Cagalinec M, Mateasik A, Chorvat D Jr. Spectrally and spatially resolved laser-induced photobleaching of endogenous flavin fluorescence in cardiac myocytes. Cytometry A. 2019;95:13-23. https://doi.org/10.1002/cyto.a.23591
  63. Duong H, Han M. A multispectral led array for the reduction of background autofluorescence in brain tissue. J Neurosci Methods. 2013;220:46-54. https://doi.org/10.1016/j.jneumeth.2013.08.018
  64. Oliveira VC, Carrara RC, Simoes DL, Saggioro FP, Carlotti CG Jr, Covas DT, et al. Sudan black b treatment reduces autofluorescence and improves resolution of in situ hybridization specific fluorescent signals of brain sections. Histol Histopathol. 2010;25:1017-1024. https://doi.org/10.14670/HH-25.1017
  65. Sun Y, Yu H, Zheng D, Cao Q, Wang Y, Harris D, et al. Sudan black B reduces autofluorescence in murine renal tissue. Arch Pathol Lab Med. 2011;135:1335-1342. https://doi.org/10.5858/arpa.2010-0549-OA
  66. Potter KA, Simon JS, Velagapudi B, Capadona JR. Reduction of autofluorescence at the microelectrode-cortical tissue interface improves antibody detection. J Neurosci Methods. 2012;203:96-105. https://doi.org/10.1016/j.jneumeth.2011.09.024
  67. Baschong W, Suetterlin R, Laeng RH. Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM). J Histochem Cytochem. 2001;49:1565-1572. https://doi.org/10.1177/002215540104901210
  68. Shilova ON, Shilov ES, Deyev SM. The effect of trypan blue treatment on autofluorescence of fixed cells. Cytometry A. 2017;91:917-925. https://doi.org/10.1002/cyto.a.23199
  69. Srivastava GK, Reinoso R, Singh AK, Fernandez-Bueno I, Hileeto D, Martino M, et al. Trypan blue staining method for quenching the autofluorescence of rpe cells for improving protein expression analysis. Exp Eye Res. 2011;93:956-962. https://doi.org/10.1016/j.exer.2011.07.002
  70. Su W, Yang L, Luo X, Chen M, Liu J. Elimination of autofluorescence in archival formaldehyde-fixed, paraffin-embedded bone marrow biopsies. Arch Pathol Lab Med. 2019;143:362-369. https://doi.org/10.5858/arpa.2017-0480-OA
  71. Neumann M, Gabel D. Simple method for reduction of autofluorescence in fluorescence microscopy. J Histochem Cytochem. 2002;50:437-439. https://doi.org/10.1177/002215540205000315
  72. Hayashi-Takanaka Y, Stasevich TJ, Kurumizaka H, Nozaki N, Kimura H. Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging. PLos One. 2014;9:E106271. https://doi.org/10.1371/journal.pone.0106271
  73. Liu PY, Chin LK, Ser W, Chen HF, Hsieh CM, Lee CH, et al. Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab Chip. 2016;16:634-644. https://doi.org/10.1039/c5lc01445j
  74. Rietdorf J, Stelzer EHK. Special optical elements. In: Pawley JB, editor. Handbook of biological confocal microscopy. 3rd ed. New York: Springer; 2006. p43-58.
  75. Hoyt LF. New table of the refractive index of pure glycerol at $20^{\circ}C$. Ind Eng Chem. 1934;26:329-332. https://doi.org/10.1021/ie50291a023
  76. Masson A, Escande P, Frongia C, Clouvel G, Ducommun B, Lorenzo C. High-resolution in-depth imaging of optically cleared thick samples using an adaptive spim. Sci Rep. 2015;5:16898. https://doi.org/10.1038/srep16898
  77. Diaspro A, Federici F, Robello M. Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy. Appl Opt. 2002;41:685-690. https://doi.org/10.1364/AO.41.000685
  78. Sylwestrak EL, Rajasethupathy P, Wright MA, Jaffe A, Deisseroth K. Multiplexed intact-tissue transcriptional analysis at cellular resolution. Cell. 2016;164:792-804. https://doi.org/10.1016/j.cell.2016.01.038
  79. Pollock JD, Wu DY, Satterlee JS. Molecular neuroanatomy: A generation of progress. Trends Neurosci. 2014;37:106-123. https://doi.org/10.1016/j.tins.2013.11.001
  80. Ando K, Laborde Q, Brion JP, Duyckaerts C. 3D imaging in the postmortem human brain with CLARITY and CUBIC. Handb Clin Neurol. 2018;150:303-317. https://doi.org/10.1016/B978-0-444-63639-3.00021-9
  81. Rossetti BJ, Wilbert SA, Mark Welch JL, Borisy GG, Nagy JG. Semi-blind sparse affine spectral unmixing of autofluorescencecontaminated micrographs. Bioinformatics. 2019;pii:btz674. https://doi.org/10.1093/bioinformatics/btz674
  82. Zakiewicz IM, Majka P, Wojcik DK, Bjaalie JG, Leergaard TB. Three-dimensional histology volume reconstruction of axonal tract tracing data: Exploring topographical organization in subcortical projections from rat barrel cortex. PLos One. 2015; 10:E0137571. https://doi.org/10.1371/journal.pone.0137571
  83. Nojima S, Susaki EA, Yoshida K, Takemoto H, Tsujimura N, Iijima S, et al. CUBIC pathology: three-dimensional imaging for pathological diagnosis. Sci Rep. 2017;7:9269. https://doi.org/10.1038/s41598-017-09117-0