• Title/Summary/Keyword: Autofluorescence

Search Result 39, Processing Time 0.033 seconds

Autofluorescence Loss in Photobleaching for Human Dentin ex vivo

  • Lee, Seunghwan Goldmund;Kim, Minwoo;Jeong, Sunghee;Hwang, Jaejoon;Kim, Jisu;Gourrier, Aurelien;Vial, Jean Claude;Kyhm, Kwangseuk
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.86-91
    • /
    • 2022
  • Two-photon fluorescence microscopy was performed on the enamel-dentin junction area of a human tooth using a femtosecond pulsed laser. We obtained a clear image contrast between the bright dentin and dark tubules with the autofluorescence generated from the endogenous fluorophores in dentin. The autofluorescence shows a broad spectrum due to complex cross links between dentinal collagens, which extend from blue to orange wavelengths (470-590 nm), but a gradual autofluorescence loss in photobleaching was observed for a long-term exposure under strong excitation. For increasing excitation power, we found that two-step decay becomes significant in the spectrally integrated autofluorescence.

Real-Time Localization of Parathyroid Glands with Near Infrared Light during Thyroid and Parathyroid Surgery (갑상선·부갑상선 수술 중 근적외선을 이용한 실시간 부갑상선의 국소화)

  • Kim, Sung Won;Jeong, Yeong Wook;Koh, Yoon Woo;Lee, Kang Dae
    • International journal of thyroidology
    • /
    • v.11 no.2
    • /
    • pp.92-98
    • /
    • 2018
  • Intraoperative identification and localization of parathyroid glands are crucial step in preventing postoperative hypocalcemia during thyroid and parathyroid surgery. If there is a method to predict the parathyroid's location rather than detecting and verifying with naked eye, it would make the operator easier to find and identify the parathyroid. Recently, near-infrared light imaging technologies have been introduced in the fields of thyroid and parathyroid surgery to predict the localization of the parathyroid. These are being conducted in two ways: autofluorescence imaging with a unique intrinsic fluorophore in the parathyroid tissues and fluorescence imaging with external fluorescence materials specially absorbed into parathyroid tissues. We are suggest that parathyroid glands can be detected by surgeon with NIR autofluorescence imaging even if they are covered by fibrofatty tissues before they are detected by surgeon's naked eye. These novel techniques are very useful to identify and preserve parathyroid glands during thyroidectomy. In this article, we reviewed the latest papers that describe autofluorescence imaging and exogenous ICG fluorescence imaging of parathyroid glands during thyroid and parathyroid surgery.

On the Feeding Behavior of Zooplankton in Lake Soyang (소양호에서 동물 플랑크톤의 섭식작용에 관한 연구)

  • 심두섭;안태석
    • Korean Journal of Microbiology
    • /
    • v.30 no.2
    • /
    • pp.129-133
    • /
    • 1992
  • Zooplankton feeding was investigated with epilluorescence microscope in Lake Soyang in August 1991. Zooplankton. which ingested fluorescence bead or fluorescently labeled bacteria (FLB). was regarded as bacterivore. The algavores wert. easily distinguished with autofluorescence of chlorophyll in gut. Copepoda nauplius and Copepodids. 7'hermocyclop.s spp, Pleosomcl spp. Brachionus spp were algavores. and DuphnB hpp. Bosmincr spp. Kerutrlla spp and Hrxuthru spp werc identified as bacterivc~res.T he mixo\ory was not detected. The percentages of algavores and bacterivores in Lake Hoyang were 65 7% and 34.3%. respectively. The bacterivorous zooplankton had trend to ingcst the beads bigger than 0.5 pm. Use of 0.5 pm bead as grazing tracer gave similar estin~ates of ingestion to FLR.

  • PDF

Application of Autofluorescence for Confocal Microscopy to Aid in Archaeoparasitological Analyses

  • Morrow, Johnica Jo;Elowsky, Christian
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.6
    • /
    • pp.581-585
    • /
    • 2019
  • Confocal laser scanning microscopy (CLSM) was used to examine archaeoparasitological specimens from coprolites associated with La Cueva de los Muertos Chiquitos (CMC) located near present-day Durango, Mexico. The eggs for 4 different types of parasites recovered from CMC coprolites were imaged using CLSM to assist with identification efforts. While some of the parasite eggs recovered from CMC coprolites were readily identified using standard light microscopy (LM), CLSM provided useful data for more challenging identifications by highlighting subtle morphological features and enhancing visualization of parasite egg anatomy. While other advanced microscopy techniques, such as scanning electron microscopy (SEM), may also detect cryptic identifying characters, CLSM is less destructive to the specimens. Utilizing CLSM allows for subsequent examinations, such as molecular analyses, that cannot be performed following SEM sample preparation and imaging. Furthermore, CLSM detects intrinsic autofluorescence molecules, making improved identification independent of resource and time-intensive protocols. These aspects of CLSM make it an excellent method for assisting in taxonomic identification and for acquiring more detailed images of archaeoparasitological specimens.

Biocide sodium hypochlorite decreases pigment production and induces oxidative damage in the harmful dinoflagellate Cochlodinium polykrikoides

  • Ebenezer, Vinitha;Ki, Jang-Seu
    • ALGAE
    • /
    • v.29 no.4
    • /
    • pp.311-319
    • /
    • 2014
  • The biocide sodium hypochlorite (NaOCl) is widely used for controlling algal growth, and this application can be extended to marine environments as well. This study evaluates the biocidal efficiency and cellular toxicity of NaOCl on the harmful dinoflagellate Cochlodinium polykrikoides, with emphasis on pigment production and antioxidant enzyme activity. The test organism showed dose-dependent decrease in growth rate on exposure to NaOCl, and the 72 h $EC_{50}$ was measured to be $0.584mg\;L^{-1}$. NaOCl significantly decreased pigment levels and chlorophyll autofluorescence intensity, indicating possible detrimental effects on the photosystem of C. polykrikoides. Moreover, it significantly increased the activities of antioxidant enzymes, suggesting the production of reactive oxygen species in the cells. These data indicate that NaOCl exerted deleterious effects on the photosynthetic machinery and induced oxidative damage in the dinoflagellate and this biocide could be effectively used for the control of algal blooms.

Future of Autofluorescence Bronchoscopy (형광기관지경의 미래)

  • Jang, Tae-Won
    • Korean Journal of Bronchoesophagology
    • /
    • v.15 no.2
    • /
    • pp.30-35
    • /
    • 2009
  • Lung cancer could be developed through a series of morphological changes from dysplasia to carcinoma in situ and then invasive cancer. However, precancerous lesions are generally a few cell layers thick and are detected only by chance. Autofluorescence bronchoscopy(AFB) is one of the newly developed diagnostic tools to detect the pre-cancerous lesions m the bronchial tissue. Several studies have shown that AFB improved the rate of detection of cancer and dysplastic lesions of the airway, especially those in intraepithelial stage. However, there were high rates of false positive with AFB, and it is also important to develop non-biopsy methods because of lack of accurate information of variable course of preneoplastic lesions regarding progression. So, many other technologies were developed, such as narrow band imaging(NBI), endobronchoscopic ultrasound, optical coherence tomography, and confocal fluorescence microendoscopy. Among the new machines, NBI is a new optical technology that can clearly visualize the microvascular structure m the mucosal layer. NBI seems to increase specificity without compromising sensitivity. In the future such techniques would make it possible to precisely study in detail the natural history of the premalignant epithelium.

  • PDF

Autofluorescence of artificial incipient root carious lesions

  • Lee, Hyeong-Mo;Park, Jeong-Kil;Hur, Bock
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.615-615
    • /
    • 2003
  • I. Objectives This study was performed to get some information about micromorphology of subsurface lesion of root caries by observing autofluorescence using confocal laser scanning microscope(CLSM) with minimum sample preparation. II. Materials and Methods Half-cut and 1 mm thick sample of human teeth were prepared to produce artificial root carious lesions. Incipient subsurface lesions were produced under optimal pH and saturity. The lesions were observed by polarized microscopy, CLSM, and back-scattered electron microscope(BSE). Calcium and phosphorus concentrations of the lesions were analyzed by line EDAX. (omitted)

  • PDF

Histological and Ultrastructural Study of Susceptible and Age-related Resistance Responses of Pepper Leaves to Colletotrichum cocodes Infection

  • Hong, Jeum-Kyu;Lee, Yeon-Kyeong;Jeun, Yong-Chull;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.128-140
    • /
    • 2001
  • Infection of pepper leaves by Colletotrichum cocodes at the two- and eight-leaf stages caused susceptible and resistant lesions 96 h after inoculation, respectively. At the two-leaf stage, progressive symptom development occurred on the infected leaves. In contrast, localized necrotic spots were characteristic symptoms at the eight-leaf stage. Infected leaves at the two-leaf stage exhibited cell death accompanied by the accumulation of autofluorescent compounds. At the eight-leaf stage, pepper leaves infected by the anthracnose fungus displayed localized autofluorescence from the symptoms. Infection of pepper leaves by C. cocodes at the two-leaf stage resulted in its rapidand massive colonization of all the leaf tissues including the vascular tissue, together with cytoplasmic collapse, distortion of chloroplasts, and disruption of host cell walls. However, penetration of C. cocodes was very limited in the older leaf tissues of pepper plants at the eight-leaf stage. Fungal hyphae grew only in the intramural spaces of the epidermal cell walls at this stage. Occlusion of amorphous material in xylem vessels, aggregation of fibrillar material in inter-cellular spaces, and deposition of protein bodies were found as resistance responses to C. cocodes.

  • PDF

Use of DNA-Specific Anthraquinone Dyes to Directly Reveal Cytoplasmic and Nuclear Boundaries in Live and Fixed Cells

  • Edward, Roy
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.391-396
    • /
    • 2009
  • Image-based, high-content screening assays demand solutions for image segmentation and cellular compartment encoding to track critical events - for example those reported by GFP fusions within mitosis, signalling pathways and protein translocations. To meet this need, a series of nuclear/cytoplasmic discriminating probes have been developed: DRAQ5$^{TM}$ and CyTRAK Orange$^{TM}$. These are spectrally compatible with GFP reporters offering new solutions in imaging and cytometry. At their most fundamental they provide a convenient fluorescent emission signature which is spectrally separated from the commonly used reporter proteins (e.g. eGFP, YFP, mRFP) and fluorescent tags such as Alexafluor 488, fluorescein and Cy2. Additionally, they do not excite in the UV and thus avoid the complications of compound UV-autofluorescence in drug discovery whilst limiting the impact of background sample autofluorescence. They provide a convenient means of stoichiometrically labelling cell nuclei in live cells without the aid of DMSO and can equally be used for fixed cells. Further developments have permitted the simultaneous and differential labelling of both nuclear and cytoplasmic compartments in live and fixed cells to clearly render the precise location of cell boundaries which may be beneficial for quantitative expression measurements, cell-cell interactions and most recently compound in vitro toxicology testing.