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Exome and genome sequencing for diagnosing 
patients with suspected rare genetic disease 
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Rare diseases, even though defined as fewer than 20,000 in South Korea, with over 8,000 rare Mendelian disorders having 
been identified, they collectively impact 6-8% of the global population. Many of the rare diseases pose significant challenges 
to patients, patients’ families, and the healthcare system. The diagnostic journey for rare disease patients is often lengthy 
and arduous, hampered by the genetic diversity and phenotypic complexity of these conditions. With the advent of next-
generation sequencing technology and clinical implementation of exome sequencing (ES) and genome sequencing (GS), the 
diagnostic rate for rare diseases is 25-50% depending on the disease category. It is also allowing more rapid new gene-disease 
association discovery and equipping us to practice precision medicine by offering tailored medical management plans, early 
intervention, family planning options. However, a substantial number of patients remain undiagnosed, and it could be due 
to several factors. Some may not have genetic disorders. Some may have disease-causing variants that are not detectable or 
interpretable by ES and GS. It's also possible that some patient might have a disease-causing variant in a gene that hasn't yet 
been linked to a disease. For patients who remain undiagnosed, reanalysis of existing data has shown promises in providing 
new molecular diagnoses achieved by new gene-disease associations, new variant discovery, and variant reclassification, 
leading to a 5-10% increase in the diagnostic rate. More advanced approach such as long-read sequencing, transcriptome 
sequencing and integration of multi-omics data may provide potential values in uncovering elusive genetic causes.
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Introduction

The definition of a rare disease is set by each country. In the 
United States and South Korea, a rare disease is defined as one 
that affects fewer than 2,000 and 20,000 people, respectively 
[1-3]. Over 80% of the rare diseases are reported to have a 
genetic basis and are commonly referred to as rare Mendelian 
diseases [4]. To date, more than 8,000 Mendelian disorders have 
been documented [2,5]. While the prevalence of each of these 
diseases is rare, collectively, there are millions of individuals and 

families worldwide affected by rare diseases which equates to 
6-8% of the global population. Many rare diseases do not have 
a cure and need long-term clinical care and management. This 
not only places a heavy personal burden on patients in terms of 
their medical, financial, and psychosocial well-being but also 
has a substantial public health and the economic impact [6]. 

Patients who are suspected of having a rare disease often un-
dergo a series of testing, but often doesn’t receive a clear answer 
and end up in a long and arduous diagnostic journey. Although 
there are rare diseases with such clear phenotype and no or low 
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genetic heterogeneity, a single gene or a small gene panel test-
ing is enough to find the molecular diagnosis, most rare diseases 
have high phenotypic complexity and genetic diversity, making 
them challenging to find a molecular diagnosis by conventional 
single/small panel genetic testing using Sanger sequencing 
method [7]. Diagnostic approach for rare disease have dramati-
cally changed with the advent of next-generation sequenc-
ing (NGS), in particular exome sequencing (ES) and genome 
sequencing (GS) [8-10]. ES simultaneously sequences almost 
all protein-coding region of nearly all genes (20,000), while GS 
sequences all non-coding regions as well. ES and GS achieve a 
diagnostic rate of approximately 25% to 50%, although this 
rate varies depending on the disease category [8-13]. The unbi-
ased assessment by ES or GS significantly speeds up the process 
of making an accurate diagnosis, especially for patients whose 
symptoms are not specific [14]. It has also led to a dramatic in-
crease in the discovery of new disease-genes association with 
approximately 250 new disease genes identified each year over 
the past decade [4]. Finally, like any other diagnostic tests, pa-
tients receiving a clear diagnosis by ES and GS will be able to re-
ceive tailored medical managements such as initiation of precise 
treatments, better monitoring for additional symptoms, and re-
ceiving customized family planning [15,16]. The patient may also 
be eligible for clinical trials. There are studies reporting how early 
application of ES/GS could be overall cost-effective even though 
the cost for ES/GS is initially high, as cost for multiple diagnostic 
testing and medical intervention within the undiagnosed period 
is dropped [17,18]. This is consistent with the American College 
of Medical Genetics and Genomics (ACMG) recommending ES 
and GS as a first-line test for patients with congenital anomalies 
or intellectual disability [19]. Currently, ES is widely implemented 
in clinical practice and GS is being adopted in national projects 
and research areas for the diagnosis of rare diseases [9,12,13,19]. 
In this review, we discuss the overall workflow of ES and GS, as 
well as their features, limitations, and future directions.

Indication for Exome and Genome Sequencing 

For patients with symptoms that strongly point to a specific 
disease, a single gene test is recommended as a first-tier test. 
Examples include patients likely to have Down syndrome, Duch-
enne muscular dystrophy or cystic fibrosis [20-22]. Then there 
are diseases such as cardiomyopathy or hearing loss with high 
genetic heterogeneity but still targeted panel sequencing test 
may suffice although there could be cases where the patient 
actually has a more complex syndromic disorder that cannot be 

detected by panels but is too young to have shown all symp-
toms or has symptoms mild or overlooked [23,24]. Therefore, an 
unbiased approach such as ES or GS may be more appropriate 
to find the molecular diagnosis more rapidly [25] and that’s why 
recently, ES and GS are being recommended as the first-line test 
for patients not only with pediatric neurodevelopmental delay 
and/or one or more congenital anomalies, but also with seem-
ingly single system disorders [19,25-27]. 

Testing Workflow of Exome and Genome  
Sequencing

The NGS-based genomic sequencing test workflow can be 
divided into wet-lab part and dry-lab part and the dry-lab part is 
typically divided into three stages: primary, secondary, and ter-
tiary [28-30]. Wet-lab workflow starts with sample accessioning, 
genomic DNA extraction and quality check, NGS library prepara-
tion including exome capture, and sequencing. The main differ-
ence between ES and GS is that ES captures and sequences only 
the protein-coding regions of almost all genes which make up 
about 1% to 2% of the genome, whereas GS sequences the en-
tire genome including the non-coding regions. Exome capture 
step involves hybridizing the sample with capture probes. There 
are various versions of commercially available capture probe kits 
[31]. It is possible to enhance the exome performance by adding 
custom capture probes to augment the coverage of difficult-to-
sequence regions, intronic regions with known disease-causing 
variants and mitochondrial genome. Once the sequencing is 
complete, the primary analysis starts with the base call files be-
ing converted to FASTQ files while demultiplexing the samples 
based on the index information that was attached to each DNA 
fragment during the library preparation step [29]. 

Secondary analysis starts with aligning all sequencing reads 
to the human reference genome. The current human reference 
genome version is GRCh38. However, there are still many labo-
ratories using GRCh37 because switching the reference version 
is a major task. When variants are compared between the data 
that was mapped to GRCh37 and GRCh38 versions, GRCh38 is 
in general more accurate although not always [32]. After post-
alignment fine tuning including potential PCR duplicate mark-
ing and base recalibration, variants are called. Multiple variant 
calling programs are employed to detect different types of vari-
ants, including single nucleotide variant (SNV), small insertion/
deletion (INDEL), copy number variant (CNV), structural variant 
(SV), repeat expansion variant, and mobile element insertion 
variant [28,29,33]. In general, ES can detect SNVs, small INDELs, 
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and large CNVs that affect more than three consecutive exons 
within the protein-coding region, while GS has a broader scope 
and can detect almost all types of variants due to continuous 
sequencing data of the entire genome [28,34,35]. 

Tertiary analysis constitutes of interpreting variants including 
annotation, filtering, classification, prioritization of variants, and 
finally identification of variants that are most likely to explain 
patient's phenotype [28,29]. Given the long list of variants gen-
erated by secondary analysis ranging from ~80,000 variants 
to ~5 million variants for ES and GS, respectively, it is critical to 
have an efficient yet consistent tertiary analysis algorithm with 
high sensitivity and specificity. All variants are classified into 
five groups: pathogenic (P), likely pathogenic (LP) or variants 
of uncertain significance (VUS), likely benign (LB), and benign 
(B), according to the ACMG guidelines released in 2015 and 
2019 [36,37]. To assess variant pathogenicity, these guidelines 
take into consideration multiple factors such as population 
frequency of a given variant, functional impact the variant is 
reported to have on the protein or may have on the protein, seg-
regation status, and how well the patient’s phenotype matches 
to the disease associated with the gene the variant is found in 
[36,37]. The first filtering step typically starts by removing vari-
ants commonly found in population databases as they cannot 
cause a rare disease and therefore classified as B/LB. This step 
removes more than ~90% of all variants and therefore it is the 
most effective filtering. However, as this filter solely relies on the 
population information, and variants that are common in sub-
population that are underrepresented in public database would 
not be filtered out as effectively and could be misclassified as P/
LP/VUS when it is actually benign. After the common variants 
are removed, the remaining variants are classified as P/LP/VUS 
based on various factors mentioned above. Then, the variants 
are prioritized by how similar the patient's clinical symptoms 
are to the reported symptoms of the disease associated with the 
gene the variant occurred in. Since this process is labor-intensive 
and time-consuming, there are now variant recommendation 
algorithms being developed using artificial intelligence (AI) 
technology [38-40]. Top-k, the frequency the diagnostic variant 
is found in the top-k variants, is a commonly used measure to 
assess the performance of the algorithms. The higher the fre-
quency is at a small number of k, the better the performance is. 
As the algorithms improve, variant interpretation efficiency and 
accuracy will be improved. 

Finally, one or two variants that are most likely to have caused 
the patient’s symptoms are selected and reported to clinicians, 
who then will evaluate the reported variants in the clinical con-

text to make a final diagnosis [28]. Additional phenotyping or 
further genetic testing may be required in case of a VUS report.

Diagnostic Yield and Technical Limitation of 
Exome and Genome Sequencing

The diagnostic yield of ES is reported to range from 12% to 
63% depending on the patient's symptoms and onset of clinical 
presentation [8,10,11,13,41], while the diagnostic yield for GS 
ranges from 21% to 73%, also depending on the phenotypes 
and ages of the patients being studied [12,41,42]. A modest 
increase in the diagnostic yield observed with GS compared to 
ES is attributed to the detection of disease-causing variants 
that are non-coding, and complex SVs [12,41]. Even some of the 
coding variants may only be called by GS as there are genomic 
regions that are difficult to sequence by ES but not GS. These re-
gions include GC-rich regions that suffer with low-coverage due 
to PCR bias [43]. Also, there could be CNVs affecting the coding 
regions but too small to be called by chromosomal microarray 
(CMA) or ES [34,35]. The resolution of CMA and ES with average 
depth-of-coverage of ~100× are 30-50 kb and 3 consecutive 
exons, respectively. Therefore, a CNV of a size less than 30kb or 
affecting fewer than 3 consecutive exons may be missed by 
both CMA and ES. Lastly, lower-level heteroplasmic mitochon-
drial genome variants may only be identified GS and not ES as 
GS typically has significantly higher mitochondrial genome cov-
erage at the level of ~1000X while ES has much lower coverage 
(<100×) unless it’s specifically targeted [44,45].

However, GS still has its limitations. Lower mean depth-of-
coverage of ~30 to 50× achieved for GS reduces its sensitivity to 
identify low-level of mosaic variants in the nuclear genome [46]. 
A substantial number of non-coding variants identified by GS 
remain as of uncertain significance as they require functional 
studies to determine their protein consequence such as altered 
splicing or abnormal expression pattern [47,48]. That is why 
the diagnostic rate increases when GS is complemented with 
transcriptome sequencing (RNAseq) [47-50]. However, RNAseq 
is mostly performed as research because not all genes are ex-
pressed in accessible tissues [50,51]. 

Next Steps for Exome/Genome-Negative  
Patients 

Despite the advances in comprehensive genomic testing, 
more than half of patients remain still undiagnosed [8-13,41,52]. 
There are several reasons for this. First, some patients may not 



34      GH Seo and H Lee • Exome and genome sequencing for rare disease diagnosis www.e-kjgm.org

actually have a genetic disorder. Some patients may exhibit 
clinical features resembling Mendelian disease, but their condi-
tions may have other underlying causes such as environmental 
factors, such as fetal alcohol syndrome or complications from 
preterm delivery. Secondly, due to technical limitations of short-
read sequencing, certain variant types cannot be detected. There 
are a lot of repeat sequences in the human genome but it’s dif-
ficult to align short sequence reads to these regions [53]. Also, 
ES and GS cannot detect methylation abnormalities, potentially 
leading to missed diagnoses [54]. Thirdly, interpretation of 
VUS with insufficient evidence to be clearly classified as either 
pathogenic or benign could make up to 50% of reports and pa-
tients receiving inconclusive results with VUS will remain undi-
agnosed [37,55]. They will have to wait until additional evidence 
is collected through studies such as transcriptome sequencing, 
functional assays, and segregation analysis in family members. 
At many times, performing more such analyses is not easily do-
able, requiring significant amount of time and resources [56-
58]. Finally, it's possible that the patient might have a disease-
causing variant in a gene that hasn't yet been linked to a disease. 
The total number of phenotypes and disease genes continues 
to grow and OMIM database grows by ~250 new gene-disease 
each year [4]. Novel gene discovery is one major reason how re-
analysis of the existing ES or GS data resulting in a new diagno-
sis [51,58,59]. Studies have shown that reanalyzing the ES data 
can lead to 3-10% increase of the diagnostic rate [52,59-62]. 
This increase is attributed to several factors, including reclassifi-
cation of variant, identification of new variant, and novel gene 
discoveries [52,59-62]. A VUS may be reclassified as pathogenic 
or LP if additional evidence such as new functional data or test 
results that were not available for the initial analysis becomes 
available [52,59-62]. For instance, a heterozygous VUS could be 
reclassified as LP if it is found to be in trans with a pathogenic 
variant for a recessive disorder, or if it turns out to be de novo 
for a dominant disorder after parental testing [36,37]. Advances 
in the bioinformatics pipeline that results in improvement in 
variant calling could identify a variant that was not identified 
before and result in a new diagnosis [52,59-62]. Patient’s clinical 
spectrum can evolve overtime and with new phenotypic infor-
mation, a previously unclear variant-disease association could 
become diagnostic. [52,59-62]. Finally, as mentioned above, the 
contribution of novel gene discoveries to diagnostic reanalysis 
is the largest among all factors resulting in successful reanalysis. 
The ACMG has published guidelines outlining how reassessment 
and reanalysis of ES/GS data should be performed [63]. Refer-
ence laboratories typically offer a complimentary reanalysis of 

the ES or GS data six months to a year after the initial testing is 
done [59,64] although more frequent free reanalysis at a shorter 
interval could be offered [52]. Achieving a new molecular diag-
nosis through reanalysis is a cost-effective approach for patients 
undiagnosed after ES or GS, and it is expected to become a rou-
tine clinical practice [17,64].

Besides periodic reanalysis, there are several next steps that 
can address some of the limitations GS and ES have. Long-read 
genome sequencing (LRGS) is one. LRGS generates sequence 
reads that are significantly longer (ranging from 1 kb to several 
mega bases) compared to the 150-300 base pair reads gener-
ated by short-read NGS [65]. It is easier to uniquely align long 
reads to genomic regions with repeat sequences, allowing vari-
ant detection within these regions that could have been missed 
when short-read sequencing was performed [65]. LRGS could 
also be useful for phasing two variants that are far apart from 
each other [66]. In addition, LRGS can detect CpG methylation to 
find variants dysregulating the epigenetic machinery [54,66,67]. 
LRGS comes with challenges on data management, storage, and 
analysis, and the application of LRGS in diagnosing undiagnosed 
patients is currently mostly performed as research, as it proves 
its utility in molecular diagnosis and the cost further decreases, 
it may become a clinical test in a near future [65]. Even though 
GS and LRGS can detect almost all types of variants, it is still 
impossible to interpret the non-coding variants. The AI-based 
in silico prediction tools such as SpliceAI or Pangolin are useful 
but they are still predictions and until a functional study is per-
formed to show abnormal splicing, the non-coding variant can-
not be determined as disease-causing with confidence [68,69]. 
Confirmation of aberrant splicing or expression levels for non-
coding variants requires RNAseq, which could increase the 
diagnostic rate by 7.5% to 18% depending on phenotype and 
tissues sampled [47-50]. The biggest challenge of RNAseq is ac-
quiring appropriate tissue to detect the transcript-level changes. 
[47,50,51]. For instance, approximately 50% of the genes as-
sociated with neurodevelopmental disorders are reported to 
be expressed at sufficient level in whole blood, muscle, or skin-
derived fibroblasts, three relatively accessible tissues. For the rest 
of the genes, a method to express them needs to be developed 
or a ultra-high coverage RNAseq would need to be performed. 
Lastly, the combination of multi-omics data, including metabo-
lomics, epigenomics, and proteomics, can complement NGS and 
contribute to diagnosis and new disease gene discoveries [70,71]. 
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Conclusion 

ES and GS have proven to be extremely useful tools, providing 
comprehensive and unbiased search for a diagnostic variant. 
They have also led to a large number of novel gene discover-
ies and understanding the underlying molecular mechanisms 
of many diseases, which in turn enabled more patients to be 
diagnosed through reanalysis. However, continuous effort is 
needed to improve the diagnostic yield of both tests by more 
effectively prioritizing variants and functionally assessing the 
impact of each variant. The bioinformatics pipeline could also 
further improve to identify more variants within the complex 
and repetitive genomic regions. For patients who are still un-
diagnosed after ES or GS, periodic reanalysis of existing data in 
light of growing medical knowledge is essential and approaches 
using more advanced technologies such as LRGS, RNAseq and/
or integration of multi-omics data could also be considered, 
particularly for patients undiagnosed even after reanalysis.
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