• Title/Summary/Keyword: phenolic components

Search Result 371, Processing Time 0.023 seconds

Phenolic Components from the Leaves of Cornus controversa H. (층층나무 잎의 Phenol성 성분 (I))

  • Lee, Dong-Ho;Lee, Seung-Ho;Chung, See-Ryun;Ro, Jai-Seup;Lee, Kyong-Soon
    • Korean Journal of Pharmacognosy
    • /
    • v.26 no.4
    • /
    • pp.327-336
    • /
    • 1995
  • Twelve phenolic components were isolated from the aqueous acetone extract of the leaf of Cornus controversa H. (Cornaceae). On the basis of chemical and spectroscopic evidence, the structures of these components were established as gallic acid, $1-O-galloyl-{\beta}-{_D}-glucose$, $1,6-di-O-galloyl-{\beta}-{_D}-glucose$, $1,2,3-tri-O-galloyl-{\beta}-{_D}-glucose$, $1,2,6-tri-O-galloyl-{\beta}-{_D}-glucose$, 3,4,6-tri-O-galloyl ${_D}-glucose$, eugeniin, gemine D, quercetin, quercitrin, hyperoside and rutin.

  • PDF

Studies on the antioxidant components of Korean ginseng 3

  • Han, Byung-Hoon;Park, Myung-Hwan;Nam, Han-Yong
    • Archives of Pharmacal Research
    • /
    • v.4 no.1
    • /
    • pp.53-58
    • /
    • 1981
  • The effective components of Korean ginseng showing the lipid-peroxide depressing activity were isolated. From the ether-soluble acidic fraction of fresh ginseng three phenolic acids were obtained. Salicylic acid and vanilic acid exhibited the potent antioxidant activity, where p-hydroxycinnamic acid did not.

  • PDF

Investigation of Phenolic, Flavonoid, and Vitamin Contents in Different Parts of Korean Ginseng (Panax ginseng C.A. Meyer)

  • Kim, Ji-Sang
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.3
    • /
    • pp.263-270
    • /
    • 2016
  • This study investigated the phenolic, flavonoid, and vitamin constituents in the main root, root hair, and leaf of ginseng. The total individual phenolic and flavonoid contents were the highest in the leaf, followed by the main root and root hair. Ferulic acid and m-coumaric acid were found to be the major phenolics in the main root and root hair, while p-coumaric acid and m-coumaric acid were the major phenolics in the leaf. Catechin was the major flavonoid component in the main root and root hair, while catechin and kaempferol were the major flavonoid components in the leaf. Pantothenic acid was detected in the highest quantity in the non-leaf parts of ginseng, followed by thiamine and cobalamin. Linolenic acid and menadione were the major components in all parts of ginseng.

Studies on the Chemical Components of Korean Ginseng (I)-GLC/MS Analysis of Free Phenolic Fraction- (고려삼의 페놀성 분획의 성분연구( I ) -유리 페놀성 분획의 GLC/MS분석-)

  • 김만욱;위재준
    • Journal of Ginseng Research
    • /
    • v.9 no.1
    • /
    • pp.54-63
    • /
    • 1985
  • The free phenolic fraction from Korean white ginseng (Panax ginseng C.A. Meyer) was studied by GLC/MS as trimethylsilyl and methyl derivative. Five phenolic compounds such as 2,6-ditert butyl p-crestal, phloroglucinol, protocatechuic acid, isoferulic acid, quinic acid were identified newly. And additionally 13 organic acids and hydrocarbons were also identified in the fraction.

  • PDF

Identification of Phenolic Antioxidative Components in Crataegus pinnatifida Bunge (산사 항산화성 물질의 분리 및 동정)

  • Kim, Jeong-Sook;Lee, Gee-Dong;Kwon, Joong-Ho;Yoon, Hyung-Sik
    • Applied Biological Chemistry
    • /
    • v.36 no.3
    • /
    • pp.154-157
    • /
    • 1993
  • Based upon the antioxidative effectiveness of ether extracts of defated Crataegus pinnatifida B., phenolic antioxidative components were separated by gel column chromatography and identified by MS and H-NMR. Two or three individual compounds were found in free, soluble and insoluble bound phenolic acids, respectively and they were identified as caffeic acid, protocatechuic acid, phloroglucinol and pyrogallol.

  • PDF

Impact of Lignin Determination Method on Oxygen Delignification Chemistry

  • Shin Soo-Jeong;Lai Yuan-Zong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.5 s.113
    • /
    • pp.50-55
    • /
    • 2005
  • In previous report, we investigated the impact of hexeneuronic acid and some residual extractiveson lignin determination. These non-lignin components severely interfered lignin content determination which also affect on the oxygen delignification comparison between aspen and pine unbleached kraft pulps. Very different pattern was observed whether based on uncorrected conventional kappa number or based on corrected kappa number in oxygen delignification comparison. Lower kappa number aspen pulps showed poor response to oxygen delignification when kappa number was used as lignin determination method but better response with using the acid lignin method. Phenolic hydroxyl group in kraft pulps were also compared based on uncorrected or corrected kappa numberfor lignin content. Based on uncorrected kappa number, lower kappa number oxygen-delignified pulps had lower phenolic hydroxyl group. However, lower kappa number oxygen-delignified pulps showed much higher phenolic hydroxyl group based on the corrected lignin content. For accurate comparison for residual lignin properties from different pulps, lignin determination should be corrected from non-lignin components contribution to lignin.

Functional Components and Antioxidant Effects of Rice Bran by Fermentation Time - Using Lactobacillus brevis - (발효시간에 따른 미강의 기능성 성분 및 항산화 효과 - 락토바실러스 브레비스를 이용 -)

  • Bokkun Yoon;Eunshim Son
    • Journal of the Korean Society of Food Culture
    • /
    • v.38 no.6
    • /
    • pp.456-464
    • /
    • 2023
  • The purpose of this study was to investigate nutritional and functional ingredients and antioxidant activity after fermenting rice bran using Lactobacillus brevis for 24, 36, and 48 hours. The results of the analysis of the nutritional ingredients revealed that there was no significant difference in the carbohydrate, crude protein, crude fat and ash content regardless of the fermentation process and fermentation time. The amount of dietary fiber was significantly different between the unfermented and fermented rice bran and was observed to be the highest after a 48-hour fermentation. The γ-oryzanol, gamma-aminobutyric acid (GABA) and total phenolic contents were significantly higher in the fermented rice bran compared to the unfermented rice bran (p<0.05) and the GABA and total phenolic contents increased significantly as the fermentation time increased (p<0.05). The 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), superoxide and hydroxyl radical scavenging activities used to measure antioxidant effects significantly increased as the fermentation time increased (p<0.05). From these results, it was confirmed that the antioxidant effect and functional components, namely γ-oryzanol, GABA, and the total phenolic content of rice bran improved with fermentation. Based on these results, fermented rice bran could be presented as a functional material for use in high value-added industries.

Regulation of Phycocyanin Development by Phenolic Compounds in the Cyanobacterium Anabaena sp. PCC 7120

  • Kim, Jin-Yong;Jo, Yeara;Kim, Young-Saeng;Lee, Eun-Jin;Yoon, Ho-Sung
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.445-449
    • /
    • 2006
  • Phenolic compounds are manufacturing by-products commonly found in industrial wastewater. The toxicity of high level phenolic compounds in wastewater threatens not only the aquatic organisms, but also many components of the adjacent ecosystem. One of the major light harvesting pigments in cyanobacteria is phycocyanin which can be rapidly and specifically degraded by external stimuli such as nutritional depletion or environmental stress. We employed the cyanobacterium Anabaena sp. PCC 7120 as an indicator organism in estimating the pollution level by phenolic compounds. The phycocyanin content of the cyanobacterium decreased without significantly altering the total chlorophyll as the phenol concentration in a medium increased. We examined the phenol contamination level using the correlation of the phycocyanin content and the phenol concentration. Our results indicated that no significant pollution by phenolic compounds was found in several waterbodies in the vicinity of Daegu, South Korea.

The Biology of Phenolic Containing Vesicles

  • Schoenwaelder, Monica E.A.
    • ALGAE
    • /
    • v.23 no.3
    • /
    • pp.163-175
    • /
    • 2008
  • Phenolic compounds play a major role in the interaction of plants with their environment. They are thought to have been a feature of higher plants since early colonization of the land. Phenolics are crucial for many important aspects of plant life. They can play structural roles in different supporting or protective tissues, for example in cell walls, they can be involved in defence strategies, and signalling properties particularly in the interactions between plants and their environment. In brown algae, phenolic compounds are contained within membrane bound vesicles known as physodes, and their roles in algae are thought to be similar to those of higher plant phenolics. They can be stained using various histochemical stains, however, none of these stains are phenolic specific so care must be taken during interpretation of such results. Many, but not all phenolics are also autofluorescent under UV or violet light. Physodes are involved in cell wall construction, both in primary and secondary walls in brown algae. They bind together with other wall components to make a tough wall. They have also been found to play a role at fertilization, in blocking polyspermy in some species. Sperm are very quickly rendered immobile after phenolic release from newly fertilized zygotes seconds after fertilization. Phenolic compounds are thought to be important herbivore deterrents in some species due to their astringent nature. Phenolic compounds also offer effective UV protection in the early life stages and also the adults of many algal species. In the future, this factor may also make them an important player in the pharmaceutical and skincare industries.

Antibacterial Activities of Phenolic Components from Camellia sinensis L. on Pathogenic Microorganisms

  • Shin, Jung-Sook;Chung, Ha-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.3
    • /
    • pp.135-140
    • /
    • 2007
  • Antibacterial activities of the major phenolic components from Camellia sinensis L. were investigated against several pathogenic microorganisms including Gram-positive strains like Staphylococcus aureus ATCC 29213 and Streptococcus pyogens 308A; and Gram-negative strains like Escherichia coli ATCC 25922, Escherichia coli 078, Pseudomonas aeruginosa 9027, and Enterobacter cloacae 1321E. The MIC values demonstrate that both (-)-epicatechin and (-)-epigallocatechin were more considerably toxic against Staphylococcus aureus ATCC 29213 than the other two catechins like (-)-epicatechingallate and (-)-epigallocatechin-3-gallate. (-)-Epicatechingallate and (-)-epigallocatechin-3-gallate were most inhibitory against Escherichia coli ATCC 25922. As a result, (-)-epicatechin showed predominant antibacterial activities among tea varieties. The contents of major polyphenolic components such as four catechins, theaflavin, and quercetin were different according to fermentation processes. The total contents of four catechins were ranged from 13.81 to 1.33%, with (-)-epigallocatechin-3-gallate being dominant among tea varieties; theaflavin was found the characteristic pigment in fully-fermented black tea.