DOI QR코드

DOI QR Code

The Biology of Phenolic Containing Vesicles

  • Schoenwaelder, Monica E.A. (University of Colorado, MCD Biology)
  • Published : 2008.09.30

Abstract

Phenolic compounds play a major role in the interaction of plants with their environment. They are thought to have been a feature of higher plants since early colonization of the land. Phenolics are crucial for many important aspects of plant life. They can play structural roles in different supporting or protective tissues, for example in cell walls, they can be involved in defence strategies, and signalling properties particularly in the interactions between plants and their environment. In brown algae, phenolic compounds are contained within membrane bound vesicles known as physodes, and their roles in algae are thought to be similar to those of higher plant phenolics. They can be stained using various histochemical stains, however, none of these stains are phenolic specific so care must be taken during interpretation of such results. Many, but not all phenolics are also autofluorescent under UV or violet light. Physodes are involved in cell wall construction, both in primary and secondary walls in brown algae. They bind together with other wall components to make a tough wall. They have also been found to play a role at fertilization, in blocking polyspermy in some species. Sperm are very quickly rendered immobile after phenolic release from newly fertilized zygotes seconds after fertilization. Phenolic compounds are thought to be important herbivore deterrents in some species due to their astringent nature. Phenolic compounds also offer effective UV protection in the early life stages and also the adults of many algal species. In the future, this factor may also make them an important player in the pharmaceutical and skincare industries.

Keywords

References

  1. Ando Y. 1951. On the so-called "fucosan" in marine Phaeophyceae. Bot. Mag. (Tokyo) 64:192-195 https://doi.org/10.15281/jplantres1887.64.192
  2. Baur P.S. and Walkinshaw C.H. 1974. Fine structure of tannin accumulation in callus cultures of Pinus elliotti (slash pine). Can. J. Bot. 52:615-619 https://doi.org/10.1139/b74-077
  3. Berger F. and Brownlee C. 1995. Physiology and development of protoplasts obtained from Fucus embryos using laser microsurgery. Protoplasma 186:63-71 https://doi.org/10.1007/BF01276937
  4. Berkaloff C. 1962. L'ultrastructure des globules iridescents de Dictyota dichotoma. J. Microscopie. 1:313-316
  5. Berthold G. 1882. Betrage zur Morphologie undo Physiology der Meeresalgen. Jahrb. Wissenschaft. Bot. 13:569-717
  6. Biggs K.J. and Fry S.C. 1987. Phenolic cross-linking in the cell wall In: Cosgrove D.J. and Knievel D.P. (eds), Physiology of Cell Wall Expansion During Plant Growth. The American Society of Plant Physiologists. pp. 46-57
  7. Bisalputra T., Shields C.M. and Markham J.W. 1971. In situ observations of the fine structure of Laminaria gametophytes and embryos in culture. I. Methods and the ultrastructure of the zygote. J. Microscopie 10:83-98
  8. Blackman A.J., Rogers G.I. and Volkman J.K. 1988. Phloroglucinol derivatives from three Australian marine algae of the genus Zonaria. J Nat. Prod. 51:158-160 https://doi.org/10.1021/np50055a027
  9. Bolwell G.P. 1993. Dynamic aspects of the plant extracellular matrix. Int. Rev. Cytol. 146:261-324 https://doi.org/10.1016/S0074-7696(08)60384-8
  10. Bouck G.B. 1965. Fine structure and organelle associations in brown algae. J. Cell Biol. 26:523-537 https://doi.org/10.1083/jcb.26.2.523
  11. Brawley S.H. 1987. A sodium-dependent fast block to polyspermy occurs in eggs of fucoid algae. Development 124:390-397 https://doi.org/10.1016/0012-1606(87)90491-X
  12. Brawley S.H. 1990. Polyspermy blocks in fucoid algae and the occurrence of polyspermy in nature. In: Dale B. (ed.), Mechanisms of Fertilization. NATO ASL Series, Vol. H45, Springer Verlag, Berlin. pp. 419-431
  13. Brawley S.H. 1991. The fast block against polyspermy in fucoid algae is an electrical block. Dev. Biol. 144:94-106 https://doi.org/10.1016/0012-1606(91)90482-I
  14. Brawley S.H. and Bell E. 1987. Partial activation of Fucus eggs with calcium ionophores and low sodium seawater. Dev. Biol. 122:217-226 https://doi.org/10.1016/0012-1606(87)90347-2
  15. Brawley S.H. and Quatrano R.S. 1979. Sulfation of fucoidin in Fucus embryos. IV. Autoradiographic investigations of fucoidin sulfation and secretion during differentiation and the effect of cytochalasin treatment. Dev. Biol. 73:193-205 https://doi.org/10.1016/0012-1606(79)90063-0
  16. Brawley S.H. and Robinson K.R. 1985. Cytochalasin treatment disrupts the endogenous currents associated with cell polarization in fucoid zygotes: studies of the role of F-actin in embryogenesis. J. Cell Biol. 100:1173-1184 https://doi.org/10.1083/jcb.100.4.1173
  17. Brawley S.H., Wetherbee R. and Quatrano R.S. 1976. Fine-structural studies of the gametes and embryo of Fucus vesiculosus L. (Phaeophyta). II. The cytoplasm of the egg and young zygote. J. Cell Sci. 20:255-271
  18. Brett C. and Waldron K. 1996. Physiology and Biochemistry of Plant Cell Walls. 2nd Ed. Topics in Plant Functional Biology: 1. Chapman and Hall, London, 255 pp
  19. Bruns E. 1894. Uber die Inhaltskorper der Meeresalgen. Flora 79:159-178
  20. Buschmann C. and Lichtenthaler H. K. 1998. Principles and characteristics of multi-colour fluorescence imaging of plants. J Plant Physiol. 152:297-314 https://doi.org/10.1016/S0176-1617(98)80144-2
  21. Chadefaud M. 1929. Les physode des Pheophycees et l'instabilitie cytoplasmique. Bull. Soc. Bot. France 76:1090-1094 https://doi.org/10.1080/00378941.1929.10836336
  22. Chadefaud M. 1932. Sur les physodes des Pheophycees. Compte Rend. Acad. Sci. 194:1675-1677
  23. Chadefaud M. 1934. Signification morphologique des physodes des Pheophycees. Compte Rend. Acad. Sci. 198:2114-2116
  24. Chadefaud M. 1936. Le cytoplasme des algues vertes et des algues brunes. Ses elements figures et ses inclusions. Rev. Algol. 8:5-286
  25. Chafe S.C and Durzan D.J. 1973. Tannin inclusions in cell suspension cultures of white spruce. Planta 113:251-262 https://doi.org/10.1007/BF00390512
  26. Clayton M.N. 1992. Progagules of marine macroalgae: structure and development. Br. Phycol. J. 27:219-232 https://doi.org/10.1080/00071619200650231
  27. Clayton M.N. and Ashburner C.M. 1994. Secretion of phenolic bodies following fertilisation in Durvillaea potatorum (Durvilleales, Phaeophyta). Eur. J. Phycol. 29:1-9 https://doi.org/10.1080/09670269400650411
  28. Clayton M.N. and Beakes G.W. 1983. Effects of fixatives on the ultrastructure of physodes in vegetative cells of Scytosiphon lomantari (Scytosiphonaceae, Phaeophyta). J. Phycol. 19:4-16 https://doi.org/10.1111/j.0022-3646.1983.00004.x
  29. Cole N.B. and Lippincott-Schwartz J. 1995. Organization of organelles and membrane traffic by microtubules. Curr. Opin. Cell Biol. 7:55-64 https://doi.org/10.1016/0955-0674(95)80045-X
  30. Combrinck S., Duplooy G.W., McCribdle, R.I. and Botha B.M. 2007. Morphology and Histochemistry of the Glandular Trichomes of Lippia scaberrima (Verbenaceae). Ann. Bot. 99:1111-1119 https://doi.org/10.1093/aob/mcm064
  31. Craigie J.S. and McLachlan J. 1964. Excretion of coloured ultraviolet absorbing substances by marine algae. Can. J. Bot. 42:23-33 https://doi.org/10.1139/b64-003
  32. Crato E. 1892. Die physode, ein organ des zellenleibes. Deut. Bot. Ges. Ber. 10:295-302
  33. Crato E. 1893a. Morphologische und microchemische untersuchungen uber die physoden. Bote. Zeit. X/XI:157-195
  34. Crato E. 1893b. Uber die Hansteen'chen fucosan korner. Deut. Bot. Ges. Ber. 11:235-241
  35. Crato E. 1896. Beitrage zur anatomie und physiologie des elementarorganismus. Beit. Biol. Pflanz. 7:407-535
  36. Dangeard P. 1930. A propos de quelques travaux recents sur les "graines de fucosane" des Pheophycees. Bull. Soc. Bot. France. 77:369-375 https://doi.org/10.1080/00378941.1930.10833738
  37. Daniel P., Henley J. and Van Winkle-Swift K. 2007. Altered zygospore wall ultrastructure correlates with reduced abiotic stress resistance in a mutant strain of Chlamydomonas monoica (Chlorophyta). J. Phycol. 43:112-119 https://doi.org/10.1111/j.1529-8817.2006.00313.x
  38. Davies J.M., Ferrier N.C. and Johnston C.S. 1973. The ultrastructure of the meristoderm cells of the hapteron of Laminaria. J. Mar. Biol. Ass. U.K. 53:237-246 https://doi.org/10.1017/S0025315400022232
  39. Dawes C.J., Scott F.M. and Bowler E. 1961. A light- and electron- microscope survey of algal cell walls. I. Phaeophyta and Rhodophyta. Am. J. Bot. 48: 925-934 https://doi.org/10.2307/2439535
  40. Defer F. 1930. Sur les "graines de fucosane" des Pheophycees. Bull. Soc. Bot. France. 77: 295-297
  41. Donaldson L.A. 2001. Lignification and lignin topochemistry - an ultrastructural view. Phytochemistry 57: 859-873 https://doi.org/10.1016/S0031-9422(01)00049-8
  42. Estes J.A. and Steinberg P.D. 1988. Predation, herbivory and kelp evolution. Paleobiology 14: 19-36 https://doi.org/10.1017/S0094837300011775
  43. Evans L.V., Callow J.A. and Callow M.E. 1982. The biology and biochemistry of reproduction and early development in Fucus. Prog. Phycol. Res. 1: 67-109
  44. Evans L.V. and Holligan M.S. 1972. Correlated light and electron microscope studies on brown algae. II. Physode production in Dictyota. New Phytol. 71: 1173-1180 https://doi.org/10.1111/j.1469-8137.1972.tb01995.x
  45. Farmer J.B and Williams J.L. 1896. On fertilization and the segmentation of the spore in Fucus. Ann. Bot. 10: 479-489
  46. Farmer J.B and Williams J.L. 1898. Contributions to our knowledge of the Fucaceae: their life history and cytology. Roy. Soc. Lond. Trans. B. 189: 623-645
  47. Feldmann G. and Guglielmi, M.G. 1972. Les physodes et les corps irisants du Dictyota dichotoma (Hudson) Lamouroux. Compt. Rend. Acad. Sci. 275: 751-754
  48. Fritsch F.E. 1945. Structure and Reproduction of the Algae. Volume II. Cambridge University Press, Cambridge, 939 pp
  49. Fry S.C. 1979. Phenolic components of the primary cell wall and their possible role in the hormonal regulation of growth. Planta 146: 343-351 https://doi.org/10.1007/BF00387807
  50. Fry S.C. 1982. Phenolic components of the primary cell wall feruloylated disaccharides of D-galactose and L-arabinose from spinach polysaccharide. Biochem. J. 203: 493-504 https://doi.org/10.1042/bj2030493
  51. Fry S.C. 1983. Feruloyated pectins from the primary cell wall: their structure and possible functions. Planta 157: 111-123 https://doi.org/10.1007/BF00393644
  52. Fry S.C. 1986. Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu. Rev. Plant Physiol. 37: 165-186 https://doi.org/10.1146/annurev.pp.37.060186.001121
  53. Glombitza K.W., Hauperich S. and Keusgen M. 1997. Phlorotannins from the brown algae Cystophora torulosa and Sargassum spinuligerum. Nat. Toxins 5: 58-63 https://doi.org/10.1002/(SICI)(1997)5:2<58::AID-NT2>3.0.CO;2-Q
  54. Glombitza K.W., Koch M. and Eckhardt G. 1977a. Chlorierte Phlorethole aus Laminaria ochroleuca. Phytochemistry 16: 796-798 https://doi.org/10.1016/S0031-9422(00)89270-5
  55. Glombitza K.W., Rauwald H.W. and Eckhardt G. 1975. Fucole, polyhydroxyoligophenyle aus Fucus vesiculosus. Phytochemistry 14: 1403-1405 https://doi.org/10.1016/S0031-9422(00)98637-0
  56. Glombitza K.W., Rauwald H.W. and Eckhardt G. 1977b. Fucophlorethole, polyhydroxyoligophynylather aus Fucus vesiculosus. Planta Med. 32: 33-45 https://doi.org/10.1055/s-0028-1097555
  57. Glombitza K.W. and Rosener H.U. 1974. Bifuhalol: ein diphenylather aus Bifurcaria bifurcata. Phytochemistry 13: 1245-1247 https://doi.org/10.1016/0031-9422(74)80110-X
  58. Glombitza K.W., Rosener H.U., Vilter H., and Rauwald W. 1973. Antibiotica aus algen 8. Mitt Phloroglucin aus Braunalgen. Planta Med. 24: 301-303 https://doi.org/10.1055/s-0028-1099502
  59. Glombitza K.W. and Sattler E. 1973. Trifuhalol, ein neuer triphenyldisther aus Halidrys siliquosa. Tetrahedron Lett. 43: 4277-4280
  60. Glombitza K.W. and Schmidt A. 1999. Trihydroxyphlorethols from the brown alga Carpophyllum angustifolium. Phytochemistry. 51: 1095-1100 https://doi.org/10.1016/S0031-9422(99)00120-X
  61. Glombitza K.W., Wegner-Hambloch S. and Schulten H.R. 1985. Antibiotics from algae, XXXVI. Phlorotannins from the brown alga Cystoseira granulata. Planta Med. 51: 116-120 https://doi.org/10.1055/s-2007-969423
  62. Grandmaison J. and Ibrahim R.K. 1996. Evidence for nuclear binding of flavonol sulphate esters in Flaveria chloraefolia. J. Plant Physiol. 147: 653-660
  63. Gregson R.P. and Daly J.J. 1982. Polyhydroxy biphenyl ethers from the brown alga Cystophora congesta. Aust. J. Chem. 35:649-657 https://doi.org/10.1071/CH9820649
  64. Hable W.E. and Kropf D.L. 1998. Roles of secretion and the cytoskeleton in cell adhesion and polarity establishment in Pelvetia compressa zygotes. Dev. Biol. 198: 45-56
  65. Hansen A. 1895. Uber stoffbildung bei den Meeresalgen. Mitteilungen aus der Zoologischen Station zu Neapel 11: 255-305
  66. Hansteen B. 1892. Studieren zur Anatomie und Physiologie der Fucoideen. Jahrbuch fur Wissenschaftliche Botanik 24: 317-36
  67. Hansteen B. 1900. Uber das Fucosan als erstes scheinbares Product der Kohlensaureassimilation bei den Fucoideen. Jahrbuch fur wissenschaftliche Botanik 35: 611-625
  68. Harris P. and Hartley R.D. 1976. Detection of bound ferulic acid in cell walls of the Graminaceae by ultraviolet fluorescence microscopy. Nature 259: 508-510 https://doi.org/10.1038/259508a0
  69. Harris P.J. and Hartley R.D. 1980. Phenolic constituents of the cell walls of monocotyledons. Biochem. Syst. Ecol. 8: 153-160 https://doi.org/10.1016/0305-1978(80)90008-3
  70. Hay M.E. and Fenical W. 1988. Marine plant-herbivore interactions: the ecology of chemical defense. Annu. Rev. Ecol. System. 19: 111-145 https://doi.org/10.1146/annurev.es.19.110188.000551
  71. Hay M.E. and Fenical W. 1992. Chemical mediation of seaweedherbivore interactions. In: John D.M., Hawkins S.J. and Price J.H. (eds), Plant-Animal Interactions in the Marine Benthos. Systematic Association Vol. 46. Clarendon Press., Oxford. pp. 319-337
  72. Hay M.E. and Steinberg P.D. 1992. The chemical ecology of plant-herbivore interactions in marine versus terrestrial communities. In: Rosenthal G.A. and Janzen D.H. (eds), Herbivores: their interactions with secondary metabolites. Evolutionary and Ecological Processes. Vol.2, Academic Press Inc. New York. pp. 371-413
  73. Henckel A. 1902. Sur l'anatomie et la biologie des algues marines, Cystoclonium purpurascens (Huds.) Kutz. Et Chordaria flagelliformis (Mull.) Ag. Scripta Botan. Horti. Univ. Petrop. St. Petersbourg 20: 81-118
  74. Hunger F.W.T. 1902. Uber das Assimilationsproduct der Dictyotaceen. Jahrbuch fur Wissenschaftliche Botanik 38: 70-82
  75. Hutzler P., Fischbach R., Heller W., Jungblut T.P. Reuber S., Schmitz R., Veit M., Weissenbock G. and Schnitzler J.P. 1998. Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. J. Exp. Bot. 49: 953-965 https://doi.org/10.1093/jexbot/49.323.953
  76. Hwang H., Chen T., Nines R.G., Shin H.C and Stoner G.D. 2007. Photochemoprevention of UVB-induced skin carcinogenesis in SKH-1 mice by brown algae polyphenols. Int. J. Canc. 119: 2742-2749 https://doi.org/10.1002/ijc.22147
  77. Jansen M.A.K., Gaba V. and Greenberg B.M. 1998. Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci. 3: 131-135 https://doi.org/10.1016/S1360-1385(98)01215-1
  78. Kaur I. and Vijayaraghavan M.R. 1992. Physode distribution and genesis in Sargassum vulgare C. Agardh and Sargassum johnstonii Setchell and Gardner. Aquat. Bot. 42: 375-384 https://doi.org/10.1016/0304-3770(92)90056-O
  79. Knapp E. 1931. Entwicklungsphysiologische untersuchungen an Fucaceen-eiern. I. Zur kenntnis der polaritat der eier von Cystophora barbata. Planta 14: 731-751 https://doi.org/10.1007/BF01917159
  80. Kreis T.E. 1990. Role of microtubules in the organisation of the Golgi apparatus. Cell Motil. Cytoskeleton 15: 67-70 https://doi.org/10.1002/cm.970150202
  81. Kropf D. 1992. Role of the cytoskeleton in cellular morphogenesis of zygotes of fucoid algae. In: Menzel D. (ed.), The Cytoskeleton of the Algae. CRC Press. Pp. 79-92
  82. Kropf D.L., Maddock A. and Gard D.L. 1990. Microtubule distribution and function in early Pelvetia development. J. Cell Sci. 97: 545-552
  83. Kylin H. 1912. Uber die Inhaltskorper der Fucoideen. Arkiv. Bot. 11: 1-26
  84. Kylin H. 1918. Uber die fucosanblasen der Phaeophyceen. Deut. Bot. Ges. Ber. 36: 10-19
  85. Kylin H. 1938. Bemerkungen uber die Fucosanblasen der Pheophyceen. Kungl. Fysiograf. Sallskap. Lund. Forhandlinger 8:1-10
  86. LaClaire J.W. and West J.A. 1978. Light and electron-microscopic studies of growth and reproduction in Cutleria (Phaeophyta) I. Gametogenesis in the female plant of C. hancockii. Protoplasma 97: 93-110 https://doi.org/10.1007/BF01276686
  87. Leppard G.G. 1973. Secretion of polysaccharides by the brown alga Pilayella littoralis. Can. J. Bot. 51: 957-965 https://doi.org/10.1139/b73-119
  88. Le Touze M.H. 1912. Contribution a l'etude histologique. Rev. Gen. Bot. 24: 33-47
  89. Levring T. 1947. Remarks on the surface layers and the formation of the fertilization membrane in Fucus eggs. Meddel. Goteborgs Bot. Tradg. 17: 97-105
  90. Levring T. 1952. Remarks on the submicroscopical structure of eggs and spermatozoids of Fucus and related genera. Physiol. Plant. 5: 528-539 https://doi.org/10.1111/j.1399-3054.1952.tb07544.x
  91. Li S.M. and Glombitza K.W. 1991. Phlorotannins from the brown alga Landsburgia quercifolia (Hook. Fil. Et Harv.) Bot. Mar. 34: 455-457 https://doi.org/10.1515/botm.1991.34.5.455
  92. Lichtenthaler H.K and Miehe J.A. 1997. Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci. 2: 316-320 https://doi.org/10.1016/S1360-1385(97)89954-2
  93. Lichtenthaler H.K. and Schweiger J. 1998. Cell wall bound Ferulic acid, the major substance of the blue-green fluorescence emission of plants. J. Plant Physiol. 152: 272-282 https://doi.org/10.1016/S0176-1617(98)80142-9
  94. Loiseaux S. 1973. Ultrastructure of zoidogenesis in unilocular zoidocysts of several brown algae. J. Phycol. 9: 277-289
  95. Mangenot G. 1921. Sur les "graines de fucosane" des Pheophycees. Compte Rendu de l'Academie des Sciences 172:126-129
  96. Mangenot G. 1922. Les inclusions cytoplasmiques des Pheophycees. Arch. Morph. Gen. Exp. 9: 135-147
  97. Mariani P., Tolomio C., and Braghetta P. 1985. An ultrastructural approach to the adaptive role of the cell wall in the intertidal alga Fucus virsoides. Protoplasma 128: 208-217 https://doi.org/10.1007/BF01276343
  98. McCully M.E. 1966. Histological studies on the genus Fucus I. Light microscopy of the mature vegetative plant. Protoplasma 62: 287-305 https://doi.org/10.1007/BF01248267
  99. McCully M.E. 1968. Histological studies on the genus Fucus III. Fine structure and possible functions of the epidermal cells of the vegetative thallus. J. Cell Sci. 3: 1-16
  100. McLachlan J. and Craigie J.S. 1964. Algal inhibition by yellow ultraviolet-absorbing substances from Fucus vesiculosus. Can. J. Bot. 42: 287-292 https://doi.org/10.1139/b64-023
  101. Mollenhauer H.H. and Morre D.J. 1976. Cytochalasin B, but not colchicine, inhibits migration of secretory vesicles in root tips of maize. Protoplasma 87: 39-48 https://doi.org/10.1007/BF01623957
  102. Mueller W.C. and Greenwood A.D. 1978. The ultrastructure of phenolic-storing cells fixed with caffeine. J. Exp. Bot. 29:757-764 https://doi.org/10.1093/jxb/29.3.757
  103. Nageli C. 1847. Die neueren Algensysteme und versuch der begrundung eines eigenen systems der Algen und Florideen. Neue Denkschr. Allg. Schweiz. Ges. ges. Naturw. 9:1-275
  104. Nelson D.R. and Jaffe L.F. 1973 Cells without cytoplasmic movements respond to cytochalasin. Dev. Biol. 30: 206-208 https://doi.org/10.1016/0012-1606(73)90058-4
  105. Novotny A.M. and Forman M. 1974. The relationship between changes in cell wall composition and the establishment of polarity in Fucus embryos. Dev. Biol. 40: 162-73 https://doi.org/10.1016/0012-1606(74)90116-X
  106. Oliveira L. and Bisalputra T. 1973. Studies in the brown alga Ectocarpus in culture. I. General ultrastructure of the sporophytic vegetative cells. Journal of Submicroscopy and Cytology 5: 107-120
  107. Opitz S., Schnitzler J.P., Hause B. and Schneider B. 2003. Histochemical analysis of phenylphenalenone-related compounds in Xiphidiumcaeruleum (Haemodoraceae). Planta 216: 881-889
  108. Parham R.A. and Kaustinen H.M. 1977. On the site of tannin synthesis in plant cells. Bot. Gaz. 138: 465-467 https://doi.org/10.1086/336950
  109. Parker M.L. and Waldron K.W. 1995. Texture of Chinese water chestnut: involvement of cell wall phenolics. J. Sci. Food Agric. 68: 337-346 https://doi.org/10.1002/jsfa.2740680313
  110. Pavia H., Cervin G., Lindgren A. and Aberg P. 1997. Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 157: 139-146 https://doi.org/10.3354/meps157139
  111. Pellegrini L. 1979. On the origin and development of vacuoles in promeristematic cells of Cystoseira stricta Sauvageau (Phaeophyta, Fucales). Protoplasma 101: 89-102 https://doi.org/10.1007/BF01293438
  112. Pellegrini L. 1980. Cytological studies on physodes in the vegetative cells of Cystoseira stricta Sauvageau (Phaeophyta, Fucales). J. Cell Sci. 41: 209-231
  113. Phillips J.A., Clayton M.N. and Harvey A.S. 1994. Comparative studies on sporangial distribution and structure in species of Zonaria, Lobophora and Homoeostrichus (Dictyotales, Phaeophyceae) from Australia. Eur. J. Phycol. 29:93-101 https://doi.org/10.1080/09670269400650541
  114. Pope D.G., Thorpe J.R., Al-Azzawi M.J. and Hall J.L. 1979. The effect of cytochalasin B on the rate of growth and ultrastructure of wheat coleoptiles and maize roots. Planta 144:373-383 https://doi.org/10.1007/BF00391581
  115. Quatrano R.S. 1973. Separation of processes associated with differentiation of two-celled Fucus embryos. Dev. Biol. 30: 209-213 https://doi.org/10.1016/0012-1606(73)90059-6
  116. Quatrano R.S. 1978. Development of cell polarity. Annu. Rev. Plant Physiol. 29: 487-510 https://doi.org/10.1146/annurev.pp.29.060178.002415
  117. Quatrano R.S. and Shaw S.L. 1997. Role of the cell wall in the determination of cell polarity and the plane of cell division in Fucus embryos. Trends Plant Sci. 2: 15-21 https://doi.org/10.1016/S1360-1385(96)10049-2
  118. Quatrano R.S. and Stevens P.T. 1976. Cell wall assembly in Fucus zygotes. I. Characterization of the polysaccharide components. Plant Physiol. 58: 224-231 https://doi.org/10.1104/pp.58.2.224
  119. Ragan M.A. 1976. Physodes and the phenolic compounds of brown algae. Composition and significance of physodes in vivo. Bot. Mar. XIX: 145-154
  120. Ragan M.A. 1985. The high molecular weight polyphloroglucinols of the marine brown alga Fucus vesiculosus L.: degradative analysis. Can. J. Chem. 63: 294-303 https://doi.org/10.1139/v85-050
  121. Ragan M.A. and Craigie J.S. 1976. Physodes and the phenolic compounds of brown algae. Isolation and characterization of phloroglucinol polymers from Fucus vesiculosus L. Can. J. Biochem. 54: 66-73 https://doi.org/10.1139/v76-012
  122. Ragan M.A. and Craigie J.S. 1978. Phenolic compounds in brown and red algae. In: Hellebust J.A. and Craigie J.S. (eds), Handbook of Phycological Methods: Physiological and Biochemical methods. Cambridge University Press, Cambridge. pp. 157-179
  123. Ragan M.A. and Glombitza K.W. 1986. Phlorotannins, brown algal polyphenols. Prog. Phycol. Res. 4: 129-241
  124. Ragan M.A. and Jamieson W.D. 1982. Oligomeric polyphloroglucinols from Fucus vesiculosus: photoplate mass spectrometric investigation. Phytochemistry 21: 2709-2711 https://doi.org/10.1016/0031-9422(82)83103-8
  125. Ragan M.A. and Jensen A. 1977. Quantitative studies on brown algal phenols. I. Estimation of absolute polyphenol content of Ascophyllum nodosum (L.). J. Exp. Mar. Biol. Ecol. 30: 209-221 https://doi.org/10.1016/0022-0981(77)90013-2
  126. Ragan M.A. and Jensen A. 1979. Quantitative studies on brown algal phenolics. III. Light-mediated exudation of polyphenols from Ascophyllum nodosum (L.) Le. Jol. J. Exp. Mar. Biol. Ecol. 36: 91-101 https://doi.org/10.1016/0022-0981(79)90102-3
  127. Reinke J. 1876. Beitrage zur Kenntniss der Tange. Jahrbuch fur Wissenshaftliche Botanik. 10: 317-382
  128. Reinold S. and Hahlbrock K. 1997. In situ localization of phenylpropanoid biosynthesis mRNAs and proteins in parsley (Petroselinum crispum). Botanica Acta 110: 431-443 https://doi.org/10.1111/j.1438-8677.1997.tb00660.x
  129. Richard M. J. 1929. Sur le contenu cellulaire des Fucus. Revue generale de Botanique 484: 209-212
  130. Ridge R.W. 1990. Cytochalasin-D causes abnormal wallingrowths and organelle crowding in legume root hairs. Bot. Mag. Tokyo 103: 87-97 https://doi.org/10.1007/BF02488413
  131. Sailler B. and Glombitza K.W. 1999. Phlorethols and fucophlorethols from the brown alga Cystophora retroflexa. Phytochemistry 50: 869-881 https://doi.org/10.1016/S0031-9422(98)00643-8
  132. Salgado L.T., Tomazetto, R., Cinelli L.P. Farina M. and Filho G.M.A. 2007. The influence of brown algae alginates on phenolic compounds capability of ultraviolet radiation absorption in vitro. Braz. J. Oceanogr. 55: 145-154 https://doi.org/10.1590/S1679-87592007000200007
  133. Schnitzler J. P., Jungblut T.P., Heller W., Kofferlein M., Hutzler P., Heinzmann U., Schmelzer E, Ernst D., Langebartels C. and Sandermann Jr. H. 1996. Tissue localization of UV-B screening pigments and of chalcone synthase mRNA in needles of Scots pine seedlings. New Phytol. 32: 247-258
  134. Schoenwaelder M.E.A. 1996. The distribution and secretion of phe-nolic compounds in the early development of Acrocarpia paniculata and Hormosira banksii (Phaeophyceae). PhD Thesis, Monash University, Australia, 117 pp
  135. Schoenwaelder M.E.A. 2002a. The occurrence and cellular significance of physodes in brown algae. Phycological Reviews 21. Phycologia 41: 125-139 https://doi.org/10.2216/i0031-8884-41-2-125.1
  136. Schoenwaelder M.E.A. 2002b. Physode distribution and the effect of "thallus sunburn" in Hormosira banksii (Fucales, Phaeophyceae). Bot. Mar. 45: 262-266 https://doi.org/10.1515/BOT.2002.025
  137. Schoenwaelder M.E.A. and Clayton M.N. 1998a. The secretion of phenolic compounds following fertilization in Acrocarpia paniculata (Fucales, Phaeophyta). Phycologia 37: 40-46 https://doi.org/10.2216/i0031-8884-37-1-40.1
  138. Schoenwaelder M.E.A. and Clayton M.N. 1998b. Secretion of phenolic substances into the zygote wall and cell plate in embryos of Hormosira and Acrocarpia (Fucales, Phaeophyceae). J. Phycol. 34: 969-980 https://doi.org/10.1046/j.1529-8817.1998.340969.x
  139. Schoenwaelder M.E.A. and Clayton M.N. 1999a. The role of the cytoskeleton in brown algal physode movement. Eur. J. Phycol. 34: 223-229 https://doi.org/10.1080/09670269910001736282
  140. Schoenwaelder M.E.A. and Clayton M.N. 1999b. The presence of phenolic compounds in isolated cell walls of brown algae. Phycologia 38: 161-166 https://doi.org/10.2216/i0031-8884-38-3-161.1
  141. Schoenwaelder M.E.A. and Clayton M.N. 2000. Physode formation in embryos of Phyllospora comosa and Hormosira banksii (Phaeophyceae). Phycologia 39: 1-9 https://doi.org/10.2216/i0031-8884-39-1-1.1
  142. Schoenwaelder M.E.A. and Wiencke C. 2000. Phenolic compounds in the embryo development of several northern hemisphere fucoids. Plant Biology 2: 24-33 https://doi.org/10.1055/s-2000-9178
  143. Schoenwaelder M.E.A., Wiencke C., Clayton M.N. and Glombitza K.W. 2003. The effect of elevated UV radiation on Fucus spp. (Fucales, Phaeophyceae) zygote and embryo development. Plant Biology 5: 366-377 https://doi.org/10.1055/s-2003-42716
  144. Schweiger J., Lang M. and Lichtenthaler H.K. 1996. Differences in fluorescence excitation spectra of leaves between stressed and non-stressed plants. J. Plant Physiol. 148: 536-547 https://doi.org/10.1016/S0176-1617(96)80073-3
  145. Steinberg P.D. 1985. Feeding preferences of Tegula funebralis and chemical defences of marine brown algae. Ecological Monographs 55: 333-349 https://doi.org/10.2307/1942581
  146. Steinberg P.D. 1986. Chemical defences and the susceptibility of tropical marine brown algae to herbivores. Oecologia 69:628-630 https://doi.org/10.1007/BF00410374
  147. Steinberg P.D. 1989. Biogeographical variation in brown algal polyphenolics and other secondary metabolite: comparison between temperate Australasia and North America. Oecologia 78: 373-382 https://doi.org/10.1007/BF00379112
  148. Steinberg P.D. and Paul V.J. 1990. Fish feeding and chemical defences of tropical brown algae in Western Australia. Mar. Ecol. Prog. Ser. 58: 253-259 https://doi.org/10.3354/meps058253
  149. Steinberg P.D. and van Altena I. 1992. Tolerance of marine invertebrate herbivores to brown algal phlorotannins in temperate Australasia. Ecological Monographs 62: 189-222 https://doi.org/10.2307/2937093
  150. Stevens P.T. and Quatrano R.S. 1978. Cell wall assembly in Fucus zygotes. II. Cellulose synthesis and deposition is controlled at the post-translational level. Devel. Biol. 62:518-525 https://doi.org/10.1016/0012-1606(78)90233-6
  151. Takamura K. 1976. A fine structure of the outer part of developing fertilized eggs of Fucus evanescens. Journal of the Faculty of Science, Hokkaido University Series V (Botany) 10: 181-188
  152. Targett N.M. and Arnold T.M. 1998. Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J. Phycol. 34: 195-205 https://doi.org/10.1046/j.1529-8817.1998.340195.x
  153. Targett N.M., Coen L.D., Boettcher A.A. and Tanner C.E. 1992. Biogeographic comparisons of marine algal polyphenolics: evidence against a latitudinal trend. Oecologia 89: 464-470 https://doi.org/10.1007/BF00317150
  154. Thuret M. G. 1858. Deuxieme note sur la Fecondation des Fucacees. Memoires de la Societe des sciences naturelles de Cherbourg 7: 34-44
  155. Treutter D. 1989. Chemical reaction detection of catechins and proanthocyanins with 4-dimethylamino-cinnamaldehyde. J. Chrom. 467: 185-93 https://doi.org/10.1016/S0021-9673(01)93963-9
  156. Tugwell S. and Branch G.M. 1989. Differential polyphenolic distribution among tissues in the kelps Ecklonia maxima, Laminaria pallida and Macrocystis angustifolia in relation to plant-defence theory. J. Exp. Mar. Biol. Ecol. 129: 219-230 https://doi.org/10.1016/0022-0981(89)90104-4
  157. Url T., Hoftberger M. and Meindl U. 1993. Cytochalasin B influences dictyosomal vesicle production and morphogenesis in the desmid Euastrum. J. Phycol. 29: 667-674 https://doi.org/10.1111/j.0022-3646.1993.00667.x
  158. van Alstyne K.L. and Paul V.J. 1990. The biogeography of polyphenolic compounds in marine macroalgae: temperate brown algal defences deter feeding by tropical herbivorous fishes. Oecologia 84: 158-163 https://doi.org/10.1007/BF00318266
  159. van Altena I.A. and Steinberg P.D. 1992. Are differences in the responses between North American and Australasian marine herbivores to phlorotannins due to differences in phlorotannin structure? Biochem. Syst. Ecol. 20: 493-499 https://doi.org/10.1016/0305-1978(92)90003-V
  160. Vreeland V. and Laetsch W.M. 1988. Role of alginate self-associating subunits in the assembly of Fucus embryo cell walls. In: Alan R. (ed.), Self Assembling Architecture. Liss. Inc., pp. 77-96
  161. Wallace G. and Fry S.C. 1994. Phenolic components of the plant cell wall. Int. Rev. Cytol. 151: 229-267 https://doi.org/10.1016/S0074-7696(08)62634-0
  162. Williamson R.E. 1993. Organelle movements. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 181-202 https://doi.org/10.1146/annurev.pp.44.060193.001145
  163. Wojtaszek P. 2000. Genes and plant cell walls: a difficult relationship. Biol. Rev. 75: 437-475 https://doi.org/10.1017/S0006323100005545
  164. Wolwer-Rieck U. and Glombitza K.W. 1990. Alkalische spaltung polymerer Phenole aus Sargassum multicum und Pelvetia canaliculata. Planta Med. 56: 115-118 https://doi.org/10.1055/s-2006-960900
  165. Xu H., Deckert R.J. and Garbary D.J. 2008. Ascophyllum and its symbionts. X. Ultrastructure of the interaction between A. nodosum (Phaeophyceae) and Mycophycias ascophylli (Ascomycetes). Botany 86: 185-193 https://doi.org/10.1139/B07-122
  166. Zaprometov M.N., Subbotina G.A. and Nikolaeva T.N. 1994. Effect of kinetin on the synthesis of phenolics and ultrastructural organization in tea-plant callus tissues. Russ. J. Plant Physiol. 41: 307-310

Cited by

  1. Unusual phenolic compounds contribute to ecophysiological performance in the purple-colored green algaZygogonium ericetorum(Zygnematophyceae, Streptophyta) from a high-alpine habitat vol.49, pp.4, 2013, https://doi.org/10.1111/jpy.12075
  2. Effect of GeO2on embryo development and photosynthesis in Fucus vesiculosus (Phaeophyceae) vol.27, pp.2, 2012, https://doi.org/10.4490/algae.2012.27.2.125
  3. Effects of copper and lead exposure on the ecophysiology of the brown seaweed Sargassum cymosum vol.253, pp.1, 2016, https://doi.org/10.1007/s00709-015-0795-4
  4. Ecophysiological responses to elevated CO2 and temperature in Cystoseira tamariscifolia (Phaeophyceae) vol.142, pp.1-2, 2017, https://doi.org/10.1007/s10584-017-1943-y
  5. Seasonal biochemical and photophysiological responses in the intertidal macroalga Cystoseira tamariscifolia (Ochrophyta) vol.115, 2016, https://doi.org/10.1016/j.marenvres.2015.11.014
  6. Inhibition of germination and early growth of rape seed (Brassica napus L.) by MCPA in anionic and ester form vol.36, pp.3, 2014, https://doi.org/10.1007/s11738-013-1448-x
  7. β-1,3-Glucans are components of brown seaweed (Phaeophyceae) cell walls vol.254, pp.2, 2017, https://doi.org/10.1007/s00709-016-1007-6
  8. Constitutive or Inducible Protective Mechanisms against UV-B Radiation in the Brown Alga Fucus vesiculosus? A Study of Gene Expression and Phlorotannin Content Responses vol.10, pp.6, 2015, https://doi.org/10.1371/journal.pone.0128003
  9. Seaweed extract stimuli in plant science and agriculture vol.23, pp.3, 2011, https://doi.org/10.1007/s10811-010-9560-4
  10. Phytochemical and Analytical Characterization of Novel Sulfated Coumarins in the Marine Green Macroalga Dasycladus vermicularis (Scopoli) Krasser vol.23, pp.11, 2018, https://doi.org/10.3390/molecules23112735
  11. From Ecology to Biotechnology, Study of the Defense Strategies of Algae and Halophytes (from Trapani Saltworks, NW Sicily) with a Focus on Antioxidants and Antimicrobial Properties vol.20, pp.4, 2019, https://doi.org/10.3390/ijms20040881