• Title/Summary/Keyword: phenol adhesives

Search Result 53, Processing Time 0.023 seconds

Estimation of Radio Frequency Electric Field Strength for Dielectric Heating of Phenol-Resorcinol-Formaldehyde Resin Used for Manufacturing Glulam (구조용 집성재 제조용 접착제(Phenol-Resorcinol-Formaldehyde Resin) 유전 가열을 위한 고주파 전기장 세기 추산)

  • Yang, Sang-Yun;Han, Yeonjung;Park, Yonggun;Eom, Chang-Deuk;Kim, Se-Jong;Kim, Kwang-Mo;Park, Moon-Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.339-345
    • /
    • 2014
  • For enhancing productivity of glulam, high frequency (HF) curing technique was researched in this study. Heat energy is generated by electromagnetic energy dissipation when HF wave is applied to a dielectric material. Because both lamina and adhesives have dielectric property, internal heat generation would be occurred when HF wave is applied to glulam. Most room temperature setting adhesives such as phenol-resorcinol-formaldehyde (PRF) resin, which is popularly used for manufacturing glulam, can be cured more quickly as temperature of adhesives increases. In this study, dielectric properties of larch wood and PRF adhesives were experimentally evaluated, and the mechanism of HF heating, which induced the fast curing of glue layer in glulam, was theoretically analyzed. Result of our experiments showed relative loss factor of PRF resin, which leads temperature increase, was higher than that of larch wood. Also, it showed density and specific heat of PRF, which are resistance factors of temperature increase, were higher than those of wood. It was expected that the heat generation in PRF resin by HF heating would occur greater than in larch wood, because the ratio of relative loss factor to density and specific heat of PRF resin was greater than that of larch wood. Through theoretical approach with the experimental results, the relative strengths of ISM band HF electric fields to achieve a target heating rate were estimated.

A comparative analysis study of fire resistance performance according to types of adhesives in Glued laminated timber (구조용 집성재의 접착제 종류에 따른 내화성능 비교 분석)

  • Choi, Yun Jeong;Hong, Seong In;An, Jae Hong;Kim, Byoung il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.25-26
    • /
    • 2022
  • In this study, glued laminated timber were manufactured by different types of adhesives for larch and spruce. Adhesives used to manufacture glued laminated timber include resorcinol resin, phenol resorcinol resin, melamine resin, and polyurethane. The char thickness and char rate according to the type of adhesive forglued laminated timber were analyzed. Melamine, resorcinol, and polyurethane showed excellent fire resistance performance in that order.

  • PDF

Physical Properties of Hybrid Poplar Flakeboard Bonded with Alkaline Phenolic Soy Adhesives

  • Yang, In;Kuo, Monlin;Myers, Deland J.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.66-75
    • /
    • 2005
  • Soybean-based adhesives have recently been reconsidered as alternatives to petroleum-based adhesives due to the uncertainty of availability of petrochemical products and the increased demand for wood adhesives. This study was conducted to investigate the adhesive properties of alkaline phenolic soy (APS) resin for hybrid poplar flakeboard. The APS resin was formulated by crosslinking an alkaline soy flour hydrolyzate with lab-prepared PF resin in the soy hydrolyzate to PF resin weight ratios of 70/30, 60/40, and 50/50. The APS resins were used to fabricate homogeneous hybrid poplar flakeboards with different resin solid levels (5%, 7%, and 9%), press temperatures (175 and $200^{\circ}C$), and press times of 8 and 10 minutes. The IB, wet MOR, and dimensional stability properties of board improved with increasing press time, press temperature, and PF level in APS resins. Increasing press time can be used to offset poor IB strength associated with a 9% resin solid level and the excessive moisture content in the mat. The following conditions were concluded to meet the requirements of the CSA standard for exterior-grade flakeboard: a 50% PF level, a 5% resin content, a $200^{\circ}C$ press temperature, and an 8 minute press time.

Use of Polyethylene as an Additive in Plywood Adhesive (합판 접착제의 첨가제로서 폴리에틸렌의 이용)

  • Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.14-18
    • /
    • 1998
  • A low density polyethylene(LDPE) was examined as an additive in phenol-formaldehyde(PF) resin adhesive for bonding radiata pine plywood. The LDPE was supplied by the commercial manufacturer. The LDPE was compared to a commercial filler commonly used in structural plywood adhesives in the United States. The adhesive mixes were made by following the recommended procedure of Georgia-Pacific Resins Inc.. using plywood-type PF resin. A total of 48 three-ply plywoods. 6.3 mm nominal thickness and 30 by 30 em in size, were made at two press times (4 and 5 min). two press temperatures (150 and $160^{\circ}C$) and 30 minute assembly times for four adhesive mixing types. Evaluations of the LDPE addition were carried out by performance tension shear tests after two cycle boil aging tests on plywood per the U.S. Product Standard PS I-83. After accelerated-aging tests. plywoods were exhibited no delamination. The test results included tension shear strength and estimated wood failure values. The plywood test results support the use of polyethylene as an additive in plywood adhesives.

  • PDF

The Bending and Compression Strength Properties in Rhus verniciflua(I) (한국산 옻나무의 휨 및 종압축 강도적 성질(I))

  • Byeon, Hee-Seop;Shimada, Masahiro;Fushitani, Masami
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.95-99
    • /
    • 1996
  • The bending and compression strength properties of two types Rhus verniciflua specimens, which made of no heat-treated wood and heat-treated wood for urushiol extraction, were measured. The heat-treated specimens were finger-jointed with either resorcinol-phenol or polyurethane resin adhesives, and the vertical type bending strength property was also measured in these specimens. The results obtained are as follows ; 1. The correlation coefficient between the compression strength and specific gravity in the specimens of no heat-treated and heat-treated wood was high. However there was no difference in compression strength property as affected by heat treatment. 2 The correlation coefficient between the bending strength and specific gravity in the specimens of no heat-treated and heat-treated wood was also high. However, there was no difference in bending strength property as affected by heat treatment. 3 The bending test showed high correlation between modulus of elasticity and modulus of rupture for the specimens made of no heat-treated and heat-treated wood. However, there was no difference in bending strength property between the specimens made of heat-treated and no heat-treated wood. 4. The efficiencies of bending strength test on the finger-jointed specimens of heat-treated wood with resorcinol-phenol and polyurethane resin adhesives were 0.85, 0.81. respectively.

  • PDF

Liquefaction of Wood and It's Application for Adhesives - Acid-Catalyzed Liquefaction of Wood with Phenol - (목재의 용액화와 접착제에의 응용 - 산촉매하에서 페놀에 의한 목재의 용액화 -)

  • Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.88-93
    • /
    • 1995
  • Acid-catalysts were used to accelerate the liquefaction of wood with phenol. Sulfuric acid was quite excellent as a acid-catalyst of liquefaction of wood. It's proper dose was 3% of oven-dried weight of wood to get the 10% of target degree of residue, when the reaction time was 2 hours. The liquefaction of wood catalyzed with sulfuric acid was easily carried out at low temperature of 140$^{\circ}C$, but the degrees of residue decreased gradually with the increase of reaction temperature. The behaviors of liquefaction of oak and radiata pine were nearly same.

  • PDF

Some Physical and Chemical Properties of Carbonized Wood Wastes(II)

  • Kim, Byung-Ro;Mishiro, Akiyoshi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.6-15
    • /
    • 1998
  • A total of forty five-ply, 30- by 30-cm lauan and larch plywood sheets were manufactured in the laboratory using commercial urea and phenol resin adhesives; half of these sheets were treated with fresh concrete. Each sheet was carbonized for 2, 4, and 6hours at $400^{\circ}C$, $600^{\circ}C$, and $750^{\circ}C$, respectively, and their physical properties were measured. The yie1d of charcoal decreased as carbonization temperature and time increased. Charcoal yield was greater in plywood than in veneer, and slightly greater in plywood treated with concrete compared to untreated plywood. Plywood manufactured with phenol resin adhesive had higher pH, higher equilibrium moisture content (EMC), and greater adsorption of methylene-blue dye compared to plywood manufactured with urea resin. For concrete-treated plywood, pH was greater than 10 even when the sheets were carbonized for 2hours at $400^{\circ}C$. Although the EMC of the phenol resin plywood was higher than that of the urea resin plywood, EMC of the phenol resin was lower than that of the urea resin. The larch phenol resin plywood that was carbonized for 6 hours at $750^{\circ}C$ adsorbed more methylene-blue than did the commercia1 wood-based activated charcoal as a result of total pore volume and surface area.

  • PDF

Recycling of Carbon Particle from Phenol Resin Waste using Supercritical Fluid (초임계 유체를 이용한 폐페놀수지로부터 카본입자 재활용 연구)

  • Cho, Hang-Kyu;Lim, Jong Sung
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.220-224
    • /
    • 2017
  • In this study, we investigated a new recycling method of phenol resin, which is widely used to make electric insulation boards and adhesives, into carbon particles by using supercritical fluids. Because phenol resin is insoluble and infusible, most of the phenol resin wastes are buried in the ground or incinerated, which leads to environmental pollution. Therefore, development of a new method to recycle phenol resin waste is an urgent issue. In this study, phenol resin waste was treated with four sub/supercritical solvents: ethanol, acetone, water, and methanol. For all the sub/supercritical solvents, the phenol resin wastes were broken down into carbon nano particles at much lower temperatures than that required in the existing carbon particle manufacturing processes. We investigated the difference of morphologies and physical properties of recycled carbon particles according to the use of various solvents. As a result, carbon nano particles with the same amorphous structure were obtained from phenol resin waste with the usage of various sub/supercritical solvents at much lower temperature.

Effect of Adhesives and Finger Pitches on Bending Creep Performances of Finger-Jointed Woods

  • Park, Han-Min;Oh, Seong-Won;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.57-65
    • /
    • 2005
  • Following our previous reports for finger-jointed woods with various finger profiles studied for the efficient use of small diameter logs and woods containing various defects, twelve types of finger-jointed woods glued with three kinds of adhesives and with two sizes of finger pitches were made with sitka spruce and red pine. The effects of the adhesives and finger pitches on bending creep performances of finger-jointed woods were investigated. The shape of creep curves differed among the used adhesives and finger pitches of finger-jointed woods for both tested species. Their creep curves showed a linear behavior beyond about one hour, and the N values fitted to power law increased with increasing finger pitches. The initial deformation increased with increasing finger pitches, regardless of the tested species and kinds of adhesives, whereas the effect of finger pitches on the creep deformation was not clear. For finger-jointed woods glued with polyvinyl acetate (PVAc) resin, creep failure occurred in 106 hours after the load was applied. And the difference of the creep compliance between finger-jointed woods glued with resorcinol-phenol formaldehyde (RPF) resin and aqueous vinyl urethane (AVU) resin was small. The ratios for creep performances of finger-jointed woods glued with RPF resin and AVU resin versus solid wood were higher in creep deformation than initial deformation for both species, and the difference between both adhesives was not found. The relative creep decreased with increasing finger pitches, and the marked differences was not found between RPF resin and AVU resin.

Investigating The Potential of Human Hair Produced from The Beauty Parlor and Barbershop as a Raw Material of Wood Adhesives (미·이용업 폐기물 인모의 목재접착제 원료화 가능성 탐색)

  • Yang, In;Ahn, Sye Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.599-612
    • /
    • 2017
  • Human hair (HH) is produced as a waste from beauty parlor and barbershop. HH-based adhesives were formulated with NaOH-hydrolyzed HH, $H_2SO_4$-hydrolyzed chicken blood (CB) and PF as a crosslinking agent. Physicochemical properties and retention rate against hot water of the adhesives were measured to investigate the potential of HH as a raw material of wood adhesives. HH was composed of keratin-type protein of 80% and over. Ash of less than 0.1% was contained in HH. Among the amino acids included in HH, glutamic acid showed the highest content, followed by cysteine, serine, arginine and threonine. Solid content of the adhesives ranged from 33.2% to 41.8% depending on hydrolysis conditions of HH and PF type. Viscosity at $25^{\circ}C$ ranged from 300 to $600mPa{\cdot}s$ resulting in a sprayable adhesive. Retention rate against hot water measured to evaluate the water resistance of adhesives was the highest in the cured resin formulated with 5% NaOH-hydrolyzed HH and 5% $H_2SO_4$-hydrolyzed CB. Meanwhile, the molar ratio of formaldehyde to phenol in PF did not have a significant impact on the retention rate of HH-based adhesives. When the retention rates of HH-based adhesives were compared to those of conventional wood adhesive resins used for the production of wood-based panels extensively, HH-based adhesives formulated with 30 wt% PF showed lower retention rate than commercial urea-formaldehyde resin. However, when PF content was increased to 35 wt%, the retention rate greatly increased and approached to that of commercial melamine-urea-formaldehyde resin. Except for the results mentioned above, the analysis of economic feasibility suggests that HH-based adhesives can be used for the production of wood-based panels if HH is hydrolyzed in proper conditions and then the HH-based adhesives are formulated by the HH hydrolyzates with 35 wt% PF.