DOI QR코드

DOI QR Code

Recycling of Carbon Particle from Phenol Resin Waste using Supercritical Fluid

초임계 유체를 이용한 폐페놀수지로부터 카본입자 재활용 연구

  • Cho, Hang-Kyu (Chemical and Biomolecular Engineering, Sogang University) ;
  • Lim, Jong Sung (Chemical and Biomolecular Engineering, Sogang University)
  • 조항규 (서강대학교 화공생명공학과) ;
  • 임종성 (서강대학교 화공생명공학과)
  • Received : 2016.09.23
  • Accepted : 2016.12.22
  • Published : 2017.04.01

Abstract

In this study, we investigated a new recycling method of phenol resin, which is widely used to make electric insulation boards and adhesives, into carbon particles by using supercritical fluids. Because phenol resin is insoluble and infusible, most of the phenol resin wastes are buried in the ground or incinerated, which leads to environmental pollution. Therefore, development of a new method to recycle phenol resin waste is an urgent issue. In this study, phenol resin waste was treated with four sub/supercritical solvents: ethanol, acetone, water, and methanol. For all the sub/supercritical solvents, the phenol resin wastes were broken down into carbon nano particles at much lower temperatures than that required in the existing carbon particle manufacturing processes. We investigated the difference of morphologies and physical properties of recycled carbon particles according to the use of various solvents. As a result, carbon nano particles with the same amorphous structure were obtained from phenol resin waste with the usage of various sub/supercritical solvents at much lower temperature.

본 논문에서는 전기절연판이나 접착제로 널리 사용되는 페놀수지를 초임계 유체를 이용하여 카본입자로 재활용 하는방법을 연구 하였다. 폐페놀수지는 불융/불용 특성으로 대부분 매립하거나 소각처리하고 있으며, 환경오염 방지차원에서 페놀수지의 새로운 재활용 기술 개발이 매우 필요한 실정이다. 폐페놀수지를 재활용하기 위해 다양한 아/초임계 용매(에탄올, 아세톤, 물, 메탄올)를 선정하여 처리하였다. 그 결과 기존의 카본입자의 제조 방법들 보다 훨씬 낮은 온도 조건($350{\sim}380^{\circ}C$)에서 카본입자를 제조할 수 있었다. 본 연구에서는 재활용된 카본입자의 FT-IR, XRD, TGA, SEM, EDS 분석을 통하여 반응용매에 따른 카본입자의 특성을 고찰하였으며, 모든 용매에 대해 동일한 화학구조 및 비정질 구조를 가지는 카본입자를 제조 할 수 있었다.

Keywords

References

  1. Bakelite, L. H., Ind. Eng. Chem., 5(6), 506-511(1913). https://doi.org/10.1021/ie50054a028
  2. Gould, D. F., Phenolic Resins., New York (1959).
  3. Voss, D., "Plastics Recycling: New Bottles for Old," Chem. Eng. Prog., 5(10) 62-67(1989).
  4. Sato, O. and Saito, N., "Decomposition of Plastics with Supercritical Fluids," Nippon Enerugi Gakkaishi., 76(9), 861-867(1997).
  5. Campanelli, J. R., Kamal, M. R. and Cooper, D. G., "Kinetics of Glycolysis of Poly(ethylene terephthalate) Melts," J. Appl. Polym. Sci., 54(11), 1731-1740(1994). https://doi.org/10.1002/app.1994.070541115
  6. Yoshioka, T., Sato, T. and Okuwaki, A., "Hydrolysis of Waste PET by Sulfuric Acid at $150^{\circ}C$ for a Chemical Recycling," J. Appl. Polym. Sci., 52(9), 1353-1355(1994). https://doi.org/10.1002/app.1994.070520919
  7. Oku, A., Hu, L. C. and Yamada, E., "Alkali Decomposition of Poly(Ethylene-Terephthalate) with Sodium-Hydroxide in Nonaqueous Ethylene-Glycol - A Study on Recycling of Terephthalic Acid and Ethylene-Glycol," Appl. Polym. Sci., 63(5), 595-601(1997). https://doi.org/10.1002/(SICI)1097-4628(19970131)63:5<595::AID-APP7>3.0.CO;2-P
  8. Lee, H. S., Jeong, H. J., Hong, S. M., Koo, C. M., Cho, H. K. and Lee, Y. W., "Recycling of Crosslinked Polypropylene and Crosslinked Polyethylene in Supercritical Methanol," Korean Chem. Eng. Res., 50(1), 88-92(2012). https://doi.org/10.9713/kcer.2012.50.1.088
  9. Song, J. H., Ahn, H. C., Kim, G. S., Kim S. B., Jung, J. S., Gong, S. H., Cho, Y. G. and Kim, S. D., "Pyrolysis Characteristics of CCL (Copper Clad Laminate) Based Paper/Phenolic Resin Composites," J. Korean Soc. Environ. Eng., 29(9), 1013-1019(2007).
  10. Chen, J. Y., Ou, C. F., Hu, Y. C. and Lin, C. C., "Depolymerization of Poly(ethylene terephthalate) Resin Under Pressure," J. Appl. Polym, Sci., 42(6), 1501-1507(1991). https://doi.org/10.1002/app.1991.070420603
  11. Adschiri, T., Sato, O., Machida, K., Sato, N. and Arai, K., "Recovery of Terephthalic Acid by Decomposition of PET in Supercritical Water," Kagaku Kogaku Ronbunsh., 23(4), 505-511(1997). https://doi.org/10.1252/kakoronbunshu.23.505
  12. Tokunaga, K., Yoshida, N., Noda, N., Sogabe, T. and Kato, T., "High Heat Load Properties of Tungsten Coated Carbon Materials," J. Nucl. Mater., 258(1), 998-1004(1998). https://doi.org/10.1016/S0022-3115(98)00316-X
  13. Lee, S. M., Kim, J. H., Jeong, E. G. and Lee, Y. S., "The Preparation and Property of Carbon Foams from Carbon Black Embedded Pitch Using PU Template," Korean Chem. Eng. Res., 54(2), 268-273(2016). https://doi.org/10.9713/kcer.2016.54.2.268
  14. Kousaalya, A. B., Kumar, R. and Packirisamy, S., "Characteri-Zation of Free Carbon in the as-thermolyzed Si-B-C-N Ceramic from a Polyorganoborosilazane Precursor," J. Adv. Ceram., 2(4), 325-332(2013). https://doi.org/10.1007/s40145-013-0079-4
  15. Shakeel, A., Faizur, R., Ali, A. D., Fahad, A. M. and Abdullah, A., "Decomposition of Hydrocarbons to Hydrogen and Carbon," Appl. Catal. A-Gen., 359, 1-24(2009). https://doi.org/10.1016/j.apcata.2009.02.038
  16. Sato, Y., Kodera, Y. and Kamo, T., "Effect of Solvents on the Liquid- Phase Cracking of Thermosetting Resins," Energy Fuels., 13(2), 364-368(1999). https://doi.org/10.1021/ef9800516
  17. Goto, M., "Chemical Recycling of Plastics Using Sub- and Supercritical Fluids," J. Supercrit. Fluids., 47(3) 500-507(2009). https://doi.org/10.1016/j.supflu.2008.10.011
  18. Kim, D. J. and Kim, K. S., "Preparation of Nanoparticles by Gas Phase Processes," Korean Chem. Eng. Res., 45(6), 536-546(2007).