• Title/Summary/Keyword: phase-gain margin

Search Result 95, Processing Time 0.031 seconds

Tuning PID Controllers for Unstable Systems with Dead Time based on Dual-Input Describing Function(DIDF) Method (DIDF를 적용한 PID 제어기의 파라미터 설정법 - 불감시간을 가지는 불안정한 시스템의 경우)

  • Choe, YeonWook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.509-518
    • /
    • 2014
  • Though various techniques have been studied as a way of adjusting parameters of PID controllers, no perfect method of determining parameters is available to date. Especially the deign of PID controller for unstable processes with dead time(UPWDT) is even more difficult due to various reasons. Generally the existing design procedures for UPWDT involve deriving formulas to meet gain and phase margin specifications, or using inner loop to stabilize UPWDT before applying PID controller. In this paper, the dual-input describing function(DIDF) method is proposed, by which the performance and robustness of the closed-loop system can be improved. The method is based on moving the critical point (-1+j0) of Nyquist stability to a new position arbitrarily selected on the complex plane. This can be done by determining appropriate coefficients of the DIDF. As a result, we can easily determine parameters of PID-type controller by using existing conventional tuning methods for stable or unstable systems. Simulation results are included to show the effectiveness of the proposed method.

Repetitive Control for Track-Following Servo of an Optical Disk Drive Using Linear Matrix Inequalities (선형 행렬 부등식을 이용한 광 디스크 드라이브의 트랙 추종 서보를 위한 반복 제어)

  • 도태용;문정호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2003
  • Rotational machines such as optical disk drives, hard disk drives, and so on are subject to periodic disturbances caused by their mechanical characteristics. In the meanwhile, it is well known that repetitive control rejects periodic disturbance effectively. This paper presents a practical application of repetitive control to the track-following servo of an optical disk drive. The repetitive control system is composed of two repetitive controllers which compensate for periodic disturbances generated by track geometry and eccentric rotation of disk and a feedback controller stabilizing the feedback loop. A robust stability for all plant uncertainties is proved using linear matrix inequalities (LMIs). In the controller design, a weighting function is introduced for the feedback controller to ensure a minimum loop gain and a sufficient phase margin. The repetitive controllers and the feedback controller are designed by solving an optimization problem which can consider the robust stability condition and the system performance. The developed repetitive control system is implemented in the digital control system with a 16-bit fixed-point digital signal processor (DSP). Through simulation and experiment. The feasibility of the proposed repetitive control system is verified.

A Study on the Optimal Parameter Selection of a Power System Stabilizer and Power Converters for HVDC Linked System (HVDC 연계 시스템의 전력계통 안정화 장치와 전력변환기 적정 파라미터 선정에 관한 연구)

  • 조의상;김경철;최홍규
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.65-72
    • /
    • 2001
  • Power system stabilizer act efficiently to damp the electromechanical oscillations in interconnected power systems. This paper presents an algorithm for the optimal parameter selection of a power system stabilizer in two-area power systems with a series HVDC link. This method is one of the classical techniques by allocating properly pole-zero positions to fit as closely as desired the ideal phase lead between the voltage reference and the generator electrical power and by changing the gain to produce a necessary damping torque over the matched frequency range. Control of HVDC converter and inverter are used a constant current loop. Proper parameters of PI controllers are obtain based on the Root-locus technique in other to have sufficient speed and stability margin to cope with charging reference values and disturbance. The small signal stability arid transient stability studies using the PSS parameters obtained from this method show that a natural oscillation frequency of the studycase system is adequately damped. Also the simulation results using the HVDC converter and inverter parameters obtained from this proposed method show proper current control characteristics. The simulation used in the paper was performed by the Power System Toolbox software program based on MATLAB.

  • PDF

Design of PID Controller to Compensate for Gain and Phase Margin Base on Gradient Descent Method (경사 하강법에 근거한 이득여유와 위상여유를 보상하는 PID 제어기 설계)

  • Park, Jae-Hoon;Cho, Joon-Ho;Choi, Jung-Nae;Lee, Won-Hyuk;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2552-2554
    • /
    • 2005
  • 제어기 설계에서 이득여유와 위상여유는 견실성 및 안정도 판별의 중요한 척도로 사용되며, 그 중 위상여유는 시스템의 성능지수와 관련된다. 이와 같은 이유로 이득여유와 위상여유의 안정도를 고려한 제어기의 설계방법이 연구되어지고 있다. 근래 Weng Khuen Ho와 Chang Chieh Hang이 제안한 설계방법은 복잡한 계산을 필요로 하는 arctan 함수를 1차 선형함수로 근사화 하여 복잡도를 감소시키면서도 원하는 이득여유와 위상여유를 만족시키는 제어기의 파라미터를 찾았다. 하지만 이 방법은 실제의 arctan 함수를 사용하는 것이 아니라 근사화된 수식을 사용함으로써 오차가 수반되어 원하는 설계조건을 만족 하지 못한다. 따라서 본 논문은 이러한 오차를 최소화하기 위해서 최적화 알고리즘을 이용한 이득여유와 위상여유를 보상하는 PID 제어기를 설계하였다.

  • PDF

A Design Guide of 3-stage CMOS Operational Amplifier with Nested Gm-C Frequency Compensation

  • Lee, Jae-Seung;Bae, Jun-Hyun;Kim, Ho-Young;Um, Ji-Yong;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.20-27
    • /
    • 2007
  • An analytic design guide was formulated for the design of 3-stage CMOS OP amp with the nested Gm-C(NGCC) frequency compensation. The proposed design guide generates straight-forwardly the design parameters such as the W/L ratio and current of each transistor from the given design specifications, such as, gain-bandwidth, phase margin, the ratio of compensation capacitance to load capacitance. The applications of this design guide to the two cases of 10pF and 100pF load capacitances, shows that the designed OP amp work with a reasonable performance in both cases, for the range of compensation capacitance from 10% to 100% of load capacitance.

A High Current Efficiency CMOS LDO Regulator with Low Power Consumption and Small Output Voltage Variation

  • Rikan, Behnam Samadpoor;Abbasizadeh, Hamed;Kang, Ji-Hun;Lee, Kang-Yoon
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • In this paper we present an LDO based on an error amplifier. The designed error amplifier has a gain of 89.93dB at low frequencies. This amplifier's Bandwidth is 50.8MHz and its phase margin is $59.2^{\circ}C$. Also we proposed a BGR. This BGR has a low output variation with temperature and its PSRR at 1 KHz is -71.5dB. For a temperature variation from $-40^{\circ}C$ to $125^{\circ}C$ we have just 9.4mV variation in 3.3V LDO output. Also it is stable for a wide range of output load currents [0-200mA] and a $1{\mu}F$ output capacitor and its line regulation and especially load regulation is very small comparing other papers. The PSRR of proposed LDO is -61.16dB at 1 KHz. Also we designed it for several output voltages by using a ladder of resistors, transmission gates and a decoder. Low power consumption is the other superiority of this LDO which is just 1.55mW in full load. The circuit was designed in $0.35{\mu}m$ CMOS process.

The design of high efficiency DC-DC Converter with ESD protection device for Mobile application (모바일 기기를 위한 ESD 보호 소자 내장형 고효율 DC-DC 컨버터 설계)

  • Ha, Ka-San;Son, Jung-Man;Shin, Samuell;Won, Jong-Il;Kwak, Jae-Chang;Koo, Yong-Seo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.565-566
    • /
    • 2008
  • The high efficiency power management IC(PMIC) for Moblie application is proposed in this paper. PMIC is controlled with PWM control method in order to have high power efficiency at high current level. The saw-tooth generator is made to have 1.2 MHz oscillation frequency and full range of output swing from ground to supply voltage(VDD:3.3V). The comparator is designed with two stage OP amplifier. And the error amplifier has 70dB DC gain and $64^{\circ}$ phase margin. DC-DC converter, based on Voltage-mode PWM control circuits, achieved the high efficiency near 95% at 100mA output current. DC-DC converter is designed with LDO in stand-by mode which fewer than 1mA for high efficiency.

  • PDF

통신위성 전력제어 및 분배장치 설계 및 해석

  • Choi, Jae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.108-116
    • /
    • 2003
  • This research presents the design and analysis of PCDU(Power Control & Distribution Unit) of communication satellite. The PCDU of a spacecraft must provide adequate power to each subsystem and payload during mission life, and it also needs high reliability and performance in space environment. A control circuit of the PCDU include bus sensing and filter circuits, error signal amplification circuit, error compensation circuit of SAS(Shunt Assembly Switch) and BPC(Battery Power Converter). The phase margin and DC gain for the designed circuits are analyzed through the frequency response characteristics of the compensated control circuit. And also the transfer function of the battery power converter circuit are discussed at the battery CCCM(Charge Continuous Conduction Mode) and battery C/DCCM(Continuous/Discontinuous Conduction Mode).

  • PDF

A Study on the Flight Control Law and the Dynamic Characteristic about Variation of Feedback Gains of T-50 Lateral-Directional Axis (T-50 가로-방향축 비행제어법칙 설계 및 궤환이득의 변화에 따른 항공기 동특성에 관한 연구)

  • Kim Chong-Sup;Hwang Byung-Moon;Kang Young-Shin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.621-630
    • /
    • 2006
  • The T-50 advanced trainer aircraft combines advanced aerodynamic features and a fly-by-wire flight control system in order to produce a stability and highly maneuverability. The flight control system both longitudinal and lateral-directional axes to achieve performance enhancements and improve stability. The T-50 employs the RSS concept in order to improve the aerodynamic performance in longitudinal axis and the longitudinal control laws employ the dynamic inversion with proportional-plus-integral control method. And, lateral-directional control laws employ the blended roll system both beta-betadot feedback and simple roll rate feedback with proportional control method in order to guarantee aircraft stability. This paper details the design process of developing lateral-directional control laws, utilizing the requirement of MIL-F-8785C and MIL-F-9490D. And, this paper propose the analysis of aircraft characteristics such as dutch-roll mode, roll mode, spiral mode, gain and phase margin about gains for lateral-directional inner loop feedback.

Modeling and Feedback Control of LLC Resonant Converters at High Switching Frequency

  • Park, Hwa-Pyeong;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.849-860
    • /
    • 2016
  • The high-switching-frequency operation of power converters can achieve high power density through size reduction of passive components, such as capacitors, inductors, and transformers. However, a small-output capacitor that has small capacitance and low effective series resistance changes the small-signal model of the converter power stage. Such a capacitor can make the converter unstable by increasing the crossover frequency in the transfer function of the small-signal model. In this paper, the design and implementation of a high-frequency LLC resonant converter are presented to verify the power density enhancement achieved by decreasing the size of passive components. The effect of small output capacitance is analyzed for stability by using a proper small-signal model of the LLC resonant converter. Finally, proper design methods of a feedback compensator are proposed to obtain a sufficient phase margin in the Bode plot of the loop gain of the converter for stable operation at 500 kHz switching frequency. A theoretical approach using MATLAB, a simulation approach using PSIM, and experimental results are presented to show the validity of the proposed analysis and design methods with 100 and 500 kHz prototype converters.