• 제목/요약/키워드: phantom model

검색결과 246건 처리시간 0.029초

3차원 의료영상진단기기를 이용한 가상 전립선 용적 측정 (Measurement of Prostate Phantom Volume Using Three-Dimensional Medical Imaging Modalities)

  • 성열훈;주용현;최보영
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권4호
    • /
    • pp.285-291
    • /
    • 2010
  • Recently, advance on various modalities of diagnosing, prostate volume estimation became possible not only by the existing two-dimension medical images data but also by the three-dimensional medical images data. In this study, magnetic resonance image (MRI), computer tomography (CT) and ultrasound (US) were employed to evaluate prostate phantom volume measurements for estimation, comparison and analysis. For the prostate phantoms aimed at estimating the volume, total of 17 models were developed by using devils-tongue jelly and changing each of the 5ml of capacity from 20ml to 100ml. For the volume estimation through 2D US, the calculation of the diameter with C9-5Mhz transducer was conducted by ellipsoid formula. For the volume estimation through 3D US, the Qlab software (Philips Medical) was used to calculate the volume data estimated by 3D9-3Mhz transducer. Moreover, the images by 16 channels CT and 1.5 Tesla MRI were added by the method of continuous cross-section addition and each of imaginary prostate model's volume was yielded. In the statistical analysis for comparing the availability of volume estimation, the correlation coefficient (r) was more than 0.9 for all indicating that there were highly correlated, and there were not statistically significant difference between each of the correlation coefficient (p=0.001). Therefore, the estimation of prostate phantom volume using three-dimensional modalities of diagnosing was quite closed to the actual estimation.

Investigation of the Characteristics of New, Uniform, Extremely Small Iron-Based Nanoparticles as T1 Contrast Agents for MRI

  • Young Ho So;Whal Lee;Eun-Ah Park;Pan Ki Kim
    • Korean Journal of Radiology
    • /
    • 제22권10호
    • /
    • pp.1708-1718
    • /
    • 2021
  • Objective: The purpose of this study was to evaluate the magnetic resonance (MR) characteristics and applicability of new, uniform, extremely small iron-based nanoparticles (ESIONs) with 3-4-nm iron cores using contrast-enhanced magnetic resonance angiography (MRA). Materials and Methods: Seven types of ESIONs were used in phantom and animal experiments with 1.5T, 3T, and 4.7T scanners. The MR characteristics of the ESIONs were evaluated via phantom experiments. With the ESIONs selected by the phantom experiments, animal experiments were performed on eight rabbits. In the animal experiments, the in vivo kinetics and enhancement effect of the ESIONs were evaluated using half-diluted and non-diluted ESIONs. The between-group differences were assessed using a linear mixed model. A commercially available gadolinium-based contrast agent (GBCA) was used as a control. Results: All ESIONs showed a good T1 shortening effect and were applicable for MRA at 1.5T and 3T. The relaxivity ratio of the ESIONs increased with increasing magnetic field strength. In the animal experiments, the ESIONs showed peak signal intensity on the first-pass images and persistent vascular enhancement until 90 minutes. On the 1-week follow-up images, the ESIONs were nearly washed out from the vascular structures and organs. The peak signal intensity on the first-pass images showed no significant difference between the non-diluted ESIONs with 3-mm iron cores and GBCA (p = 1.000). On the 10-minutes post-contrast images, the non-diluted ESIONs showed a significantly higher signal intensity than did the GBCA (p < 0.001). Conclusion: In the phantom experiments, the ESIONs with 3-4-nm iron oxide cores showed a good T1 shortening effect at 1.5T and 3T. In the animal experiments, the ESIONs with 3-nm iron cores showed comparable enhancement on the first-pass images and superior enhancement effect on the delayed images compared to the commercially available GBCA at 3T.

Implementation of Visible monkey into general-purpose Monte Carlo codes: MCNP, PHITS, and Geant4

  • Soo Min Lee;Chansoo Choi;Bangho Shin;Yumi Lee;Ji Won Choi;Bo-Wi Cheon;Chul Hee Min;Beom Sun Chung;Hyun Joon Choi ;Yeon Soo Yeom
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4019-4025
    • /
    • 2023
  • Recently, a new monkey computational phantom, called Visible Monkey, was developed for non-ionizing radiation studies in animal research. In this study, we extended its applications to ionizing radiation studies by implementing the voxel model of the Visible Monkey into three general-purpose Monte Carlo (MC) codes: MCNP6, PHITS, and Geant4. The implementation work for MCNP and PHITS was conducted using the LATTICE, UNIVERSE, and FILL cards. The G4VNestedParameterisation class was used for Geant4. Then, organ dose coefficients (DCs) for idealized photon beams in the antero-posterior direction were calculated using the three codes and compared, showing excellent agreement (differences <3%). Additionally, organ DCs in other directions (postero-anterior, left-lateral, and right-lateral) were calculated and compared with those of the newborn and 1-year-old reference phantoms. Significant differences were observed (e.g., the stomach DC of the monkey was 5-fold greater than that of the 1-year-old phantom at 0.03 MeV) while the differences tended to decrease with increasing energy (mostly <20% at 10 MeV). The results of this study allows conducting MC simulations using the Visible Monkey to estimate organ-level doses, which should be valuable to support/improve monkey experiments involving ionizing radiation exposures.

Depth Dose According to Depth during Cone Beam Computed Tomography Acquisition and Dose Assessment in the Orbital Area Using a Three-Dimensional Printer

  • Min Ho Choi;Dong Yeon Lee;Yeong Rok Kang;Hyo Jin Kim
    • Journal of Radiation Protection and Research
    • /
    • 제49권2호
    • /
    • pp.68-77
    • /
    • 2024
  • Background: Cone beam computed tomography (CBCT) is essential for correcting and verifying patient position before radiation therapy. However, it poses additional radiation exposure during CBCT scans. Therefore, this study aimed to evaluate radiological safety for the human body through dose assessment for CBCT. Materials and Methods: For CBCT dose assessment, the depth dose was evaluated using a cheese phantom, and the dose in the orbital area was evaluated using a human body phantom self-fabricated with a three-dimensional printer. Results and Discussion: The evaluation of radiation doses revealed maximum doses of 14.14 mGy and minimum doses of 6.12 mGy for pelvic imaging conditions. For chest imaging conditions, the maximum doses were 4.82 mGy, and the minimum doses were 2.35 mGy. Head imaging conditions showed maximum doses of 1.46 mGy and minimum doses of 0.39 mGy. The eyeball doses using a human body phantom model averaged at 2.11 mGy on the left and 2.19 mGy on the right. The depth dose ranged between 0.39 mGy and 14.14 mGy, depending on the change in depth for each imaging mode, and the average dose in the orbit area using a human body phantom was 2.15 mGy. Conclusion: Based on the experimental results, CBCT did not significantly affect the radiation dose. However, it is important to maintain a minimal radiation dose to optimize radiation protection following the as low as reasonable achievable principle.

Preliminary Evaluation of the Activity Concentration Limits for Consumer Goods Containing NORM

  • Jang, Mee;Chung, Kun Ho;Ji, Young Yong;Lim, Jong Myung;Kang, Mun Ja;Choi, Guen Sik
    • Journal of Radiation Protection and Research
    • /
    • 제41권2호
    • /
    • pp.101-104
    • /
    • 2016
  • Background: To protect the public from natural radioactive materials, the 'Act on safety control of radioactive rays around living environment" was established in Korea. There is an annual effective dose limit of 1 mSv for products, but the activity concentration limit for products is not established yet. Materials and Methods: To suggest the activity concentration limits for consumer goods containing NORM, in this research, we assumed the "small room model" surrounding the ICRP reference phantom to simulate the consumer goods in contact with the human bodies. Using the Monte Carlo code MCNPX, we evaluate the effective dose rate for the ICRP reference phantom in a small room with dimension of phantom size and derived the activity concentration limit for consumer goods. Results and Discussion: The consumer goods have about 1600, 1200 and $19000Bq{\cdot}kg^{-1}$ for $^{226}Ra$, $^{232}Th$ and $^{40}K$, and the activity concentration limits are about six times comparing with the values of building materials. We applied the index to real samples, though we did not consider radioactivity of $^{40}K$, indexes of the some samples are more than 6. However, this index concept using small room model is very conservative, for the consumer goods over than index 6, it is necessary to reevaluate the absorbed dose considering real usage scenario and material characteristics. Conclusion: In this research, we derived activity concentration limits for consumer goods in contact with bodies and the results can be used as preliminary screening tool for consumer goods as index concept.

치과 X선 촬영에 있어서 환자에 대한 피폭과 방어에 관한 연구 (THE STUDY OF PATIENT EXPOSURE AND PROTECTION FROM DENTAL RADIOGRAPHY)

  • 박태원
    • 치과방사선
    • /
    • 제9권1호
    • /
    • pp.25-31
    • /
    • 1979
  • The utilization of x-ray for diagnosis and examination is increasing by about 5-15% every year, therefore, it would be mandatory to protect the patients from exposures and so, studies in this field are performed even now. In dental field, the area of irradiation is limited any to the head and neck area, but the irradiated angle is varied following the objected tooth, so the adjacent structures lens and thyroid gland would be fragile to radiation. And the scattered radiation is one of the complicated problems in the protection because of specificity of dental x-ray and its object structures. The author, by using TLD (Thermo luminescent Dosimeter; Teledyne Isotopes-Model 7300, Element; TLD 200(CaF₂:Dy) and Capintec(Capintec Model 192, PM-30 Diagnostic chamber 28㎖ active volume), tried a measurement of air dose distribution of the scattered radiation and the irradiated dose of lens and thyroid gland under the condition of taking the film on the left maxillary molar. The results were as follows: 1. The half value layer of adapted dental x-ray machine was measured, and is 1.44㎜ Al. 2. The time of irradiation on the left maxillary molar in the Alderson Rando Phantom, the measured doses of left and right lens, and thyroid gland were 8,9mR, 1,2mR and 2,8mR. Under the same conditions, the scattered radiation at the distance of 1 meter from the phantom were 84 μR at the front side, 11μR at the back side, 18μR at the right side and 72μR at the left side. 3. Under the same conditions, the dose showed higher value by about 5% in the presence of object(phantom) than in the case of absence.

  • PDF

자기 지도 학습훈련 기반의 Noise2Void 네트워크를 이용한 PET 영상의 잡음 제거 평가: 팬텀 실험 (The Evaluation of Denoising PET Image Using Self Supervised Noise2Void Learning Training: A Phantom Study)

  • 윤석환;박찬록
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권6호
    • /
    • pp.655-661
    • /
    • 2021
  • Positron emission tomography (PET) images is affected by acquisition time, short acquisition times results in low gamma counts leading to degradation of image quality by statistical noise. Noise2Void(N2V) is self supervised denoising model that is convolutional neural network (CNN) based deep learning. The purpose of this study is to evaluate denoising performance of N2V for PET image with a short acquisition time. The phantom was scanned as a list mode for 10 min using Biograph mCT40 of PET/CT (Siemens Healthcare, Erlangen, Germany). We compared PET images using NEMA image-quality phantom for standard acquisition time (10 min), short acquisition time (2min) and simulated PET image (S2 min). To evaluate performance of N2V, the peak signal to noise ratio (PSNR), normalized root mean square error (NRMSE), structural similarity index (SSIM) and radio-activity recovery coefficient (RC) were used. The PSNR, NRMSE and SSIM for 2 min and S2 min PET images compared to 10min PET image were 30.983, 33.936, 9.954, 7.609 and 0.916, 0.934 respectively. The RC for spheres with S2 min PET image also met European Association of Nuclear Medicine Research Ltd. (EARL) FDG PET accreditation program. We confirmed generated S2 min PET image from N2V deep learning showed improvement results compared to 2 min PET image and The PET images on visual analysis were also comparable between 10 min and S2 min PET images. In conclusion, noisy PET image by means of short acquisition time using N2V denoising network model can be improved image quality without underestimation of radioactivity.

고정익 무인항공기(드론)와 보급형 회전익 무인항공기를 이용한 지형측량 결과의 비교 (Comparison of Topographic Surveying Results using a Fixed-wing and a Popular Rotary-wing Unmanned Aerial Vehicle (Drone))

  • 이성재;최요순
    • 터널과지하공간
    • /
    • 제26권1호
    • /
    • pp.24-31
    • /
    • 2016
  • 최근 노천광산 현장의 지형측량을 위해 고정익 무인항공기와 회전익 무인항공기를 이용한 항공사진측량 기법들이 활발하게 연구되고 있다. 고정익 무인항공기와 회전익 무인항공기는 비행고도, 비행속도, 비행시간, 탑재된 광학 카메라의 성능 등에서 다양한 차이가 있으므로 동일한 현장을 대상으로 지형측량을 수행한 후 그 결과를 비교해 볼 필요가 있다. 본 연구에서는 경상남도 양산시에 위치한 토목건설 현장을 연구지역으로 선정하고, 고정익 무인항공기인 eBee와 보급형 회전익 무인항공기인 Phantom2 Vision+를 이용하여 지형측량을 수행한 후 그 결과를 비교하였다. eBee와 Phantom2 Vision+에서 촬영된 항공사진을 각각 자료처리한 결과 약 4 cm/pixel 공간해상도의 정사영상과 수치표면모델들을 제작할 수 있었다. 7곳의 지상기준점들에 대한 고정밀 위성측정시스템 좌표 측정결과와 비교할 때 eBee와 Phantom2 Vision+의 지형측량 결과 모두 평균 제곱근 오차가 X, Y, Z 방향에서 10 cm 내외로 나타났다.

양성자 치료계획에서 Iterative Metal Artifact Reduction(IMAR) Algorithm 적용의 유용성 평가 (Evaluation of Usefulness of Iterative Metal Artifact Reduction(IMAR) Algorithm In Proton Therapy Planning)

  • 한영길;장요종;강동혁;김선영;이두현
    • 대한방사선치료학회지
    • /
    • 제29권1호
    • /
    • pp.49-56
    • /
    • 2017
  • 목 적: CT(computed tomography) 영상에서 Metal Artifact로 인해 왜곡된 영상을 보정하는 Iterative Metal Artifact Reduction(IMAR) Algorithm의 정확성을 평가하고 양성자 치료계획에서 IMAR Algorithm 적용의 유용성을 평가하고자 한다. 대상 및 방법: CT simulator를 이용하여 CIRS Phantom 내에 금속을 삽입한 것과 삽입하지 않은 영상을 각각 촬영하였다. Phantom 내의 동일한 위치에 ROI1, ROI2를 설정하여 금속이 없는 경우의 영상과 금속으로 인한 Artifact가 발생한 영상, IMAR Algorithm을 적용한 영상에서 CT Number값의 차이를 비교하였다. 또, 금속 주변에 위치한 조직등가물질의 CT Number값을 비교하였다. 척추에 임플란트 시술을 시행한 환자를 가정하여 Rando 팬텀의 척추 부위에 Titanium 봉을 삽입하여 CT 촬영을 하였다. IMAR Algorithm 적용 전과 후의 영상에서 같은 부위에 ROI 1, ROI 2를 설정하여 CT Number값을 측정하고, 각각의 영상에 동일한 양성자 치료계획을 세워 세 지점에서 양성자선의 비정(Range)의 차이를 비교하였다. 결 과: CIRS Phantom 평가에서 금속이 없는 경우의 평균 CT number값은 ROI 1에서 -6.5 HU, ROI 2에서 -10.5 HU였다. 금속이 있는 경우 Fe, Ti, W 순으로 ROI 1에서 -148.1, -45.1, -151.7 HU였으며 IMAR Algorithm을 적용 하였을 때는 -0.9, -2.0, -1.9 HU로 증가하였다. ROI 2에서는 금속이 있는 경우 171.8, 63.9, 177.0 HU였으며 IMAR Algorithm 적용 후에는 10.0, 6.7, 8.1 HU로 감소하였다. 조직등가물질의 CT Number값은 가장 멀리 위치한 폐를 제외하고 모두 원래의 CT Number값에 가깝게 보정이 되었다. Rando Phantom 평가는 금속이 없는 경우와 금속이 있는 경우, IMAR Algorithm을 적용하였을 때 평균 CT Number값은 각각 ROI 1에서 9.9, -202.8, 35.1 HU였으며 ROI 2에서 9.0, 107.1, 29 HU였다. 치료계획에서 금속이 없을 때와 양성자선의 Range의 차이는 IMAR Algorithm을 적용하였을 때 1번 지점에서 평균 0.26 cm 감소하였으며 2번 지점에서 평균 0.20 cm 감소하였다. 3번 지점에서는 평균 0.12 cm 감소하였다. 결 론: IMAR Algorithm을 적용함으로써 CT Number값은 금속이 없을 때의 원래의 값에 가깝게 보정되었다. 또, 양성자 치료계획의 Beam Profile에서 IMAR Algorithm 적용 후 비정의 차이가 0.01에서 최대 3.6 mm 줄어들었다. Artifact가 존재하지 않는 영상과 비교하여 약간의 차이는 존재하지만 양성자의 비정에 따른 선량의 급격한 변화를 고려한다면 금속이 있는 환자에게 IMAR Algorithm의 적용은 유용할 것으로 사료된다.

  • PDF

T1 Measurement in PRESS

  • Kang, Sei-Kwon;Choe, Bo-Young;Suh, Tae-Suk;Lee, Hyoung-Koo
    • 대한자기공명의과학회:학술대회논문집
    • /
    • 대한자기공명의과학회 2001년도 제6차 학술대회 초록집
    • /
    • pp.116-116
    • /
    • 2001
  • Purpose: PRESS is one of the representative sequences in MRS, but still, we do not have the formul describing the steady state magnetization of it. So, we derive the equation of th magnetization as a function of the echo time and the repetition time, and compare it wit phantom experiments. Method: PRESS consists of three 180 pulses and the additional crusher gradients whic destroy the unwanted coherences of the magnetization. Using the simple vector model, w derive a formula which describes the behaviour of the magnetization In PRESS and compa the results with the phantom experiment. Also, we explore the results of the T1 from STEAM, PRESS and the simple exponential.

  • PDF