• Title/Summary/Keyword: phantom key

Search Result 36, Processing Time 0.023 seconds

Comparison of Digital Mammography and Digital Breast Tomosynthesis (디지털 유방촬영기기와 3차원 디지털 유방단층영상합성기기의 비교연구)

  • Kim, Ye-Seul;Park, Hye-Suk;Choi, Jae-Gu;Choi, Young-Wook;Park, Jun-Ho;Lee, Jae-Jun;Kwak, Su-Bin;Kim, Eun-Hye;Kim, Ju-Yeon;Jung, Hyun-Jung;Lee, Haeng-Hwa;Bae, Gyu-Won;Lee, Mi-Young;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.261-268
    • /
    • 2012
  • Breast cancer is the second leading cause of women cancer death in Korea. The key for reducing disease mortality is early detection. Although digital mammography (DM) has been credited as one of the major reasons for the early detection to decrease in breast cancer mortality observed in the last 20 years, DM is far from perfect for several limitations. Digital breast tomosynthesis (DBT) is expected to overcome some inherent limitations of conventional mammography caused by overlapping of normal tissue and pathological tissue during the standard 2D projections for the improved lesion margin visibility and early breast cancer detection. In this study, we compared a DM system and DBT system acquired with different thickness of breast phantom. We acquired breast phantom data with same average glandular dose (AGD) from 1 mGy to 4 mGy under same experimental condition. The contrast, micro-calcification measurement accuracy and observer study were conducted with breast phantom images. As a result, the higher accuracy of lesion detection with DBT system compared to DM system was demonstrated in this study. Furthermore, the pain of patients caused by severe compression can be reduced with DBT system. In conclusion, the results indicated that DBT system play an important role in breast cancer detection.

Parametric Images of Standardized Uptake Values using P-18-FDG Attenuation Corrected Whole Body PET (F-18-FDG감쇠보정 전신 PET을 이용한 표준섭취계수 추정과 매개변수 영상의 구성)

  • Kim, Kyeong-Min;Kwark, Cheol-Eun;Lee, Dong-Soo;Jeong, Jae-Min;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon;Kim, Yong-Jin
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.4
    • /
    • pp.560-569
    • /
    • 1996
  • Background and Purpose : Standardized uptake value(SUV) has been used as a quantitative index for differentiating benign and malignant tumors with F-18-FDG PET In this study, we produced whole body parametric images of SUV(WBPIS) by body weight normalization, and validated the values by comparison with SUV's calculated with regional scans. Subjects and Methods : Whole body scans were followed by regional scans sequentially on 23 patients. In whole body study, transmission and emission scans were acquired for 2 minutes and 6 minutes for each bed position, respectively. In regional study, transmission and emission scans were acquired for 20 minutes. Measured and segmented/ smoothed attenuation correction were applied using these 2 min transmission scans in whole body studies. The effects of attenuation correction on SUVs were evaluated quantitatively using F-18 filled cylindrical phantom. The mean and peak SUVs obtained from WBPIS were compared with SUVs of the regional scans. Results : In phantom studies, with any method of attenuation correction using regional or whole body studies of phantom, SUVs were nearly consistent. In whole body scan, SUV obtained using measured attenuation correction method was a little higher than SUV of regional scan. SUV obtained using segmented/smoothed attenuation correction method was a little lower. In patient studies, WBPIS using segmented/smoothed attenuation correction method was much smoother and more readable. SUVs of WBPIS obtained with both methods of attenuation correction were well correlated with SUVs of regional scans(r=0.9). SUVs of WBPIS with measured attenuation correction method were 5% lower than SUVs of regional scans. SUVs of WBPIS with segmented/smoothed attenuation correction method were 10% lower than SUVs of regional scans. The differences of SUVs of WBPIS by the two attenuation correction methods were relatively small compared with the possible differences derived from biological characteristics of tumors. Conclusion : We concluded that WBPIS could be useful in the quantification of tumor as well as in localization of whole body lesions, which were often outside the field of view in regional scan. WBPIS made using segmented/smoothed attenuation correction method could be used in clinical routines and SUVs from attenuation corrected F-18-FDG PET could be used interchangeably with SUVs of regional studies.

  • PDF

Evaluation of Dosimetric Effect and Treatment Time by Plan Parameters for Endobronchial Brachytherapy

  • Choi, Chang Heon;Park, Jong Min;Park, So-Yeon;Kang, SungHee;Cho, Jin Dong;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.28 no.2
    • /
    • pp.39-44
    • /
    • 2017
  • This study aims to analyze dose distribution and treatment time of endobronchial brachytherapy (EBBT) by changing the position step size of the dwell position. A solid water phantom and an intraluminal catheter were used in the treatment plan. The treatment plans were generated for 3, 5, 7, and 10 cm treatment lengths, respectively. For each treatment length, the source position step sizes were set as 2.5, 5, and 10 mm. Three reference points were set 1 cm away from the central axis of the catheter, along the axis, for uniform dose distribution. Volumetric dose distribution was calculated to evaluate the dosimetric effect. The total radiation delivery time and total dwell time were estimated for treatment efficiency, which were increased with position step sizes. At half-life time, the differences between the position step sizes in the total radiation delivery time were 18.1, 15.4, 18.0, and 24.0 s for 3, 5, 7, and 10 cm treatment lengths, respectively. The dose distributions were more homogenous by increasing the position step sizes. The dose difference of the reference point was less than 10%. In brachytherapy, this difference can be negligible. For EBBT, the treatment time is the key factor while considering the patient status. To reduce the total treatment time, EBBT can be performed with 2.5 mm position step size.

Efficient Determination of Iteration Number for Algebraic Reconstruction Technique in CT (CT의 대수적재구성기법에서 효율적인 반복 횟수 결정)

  • Joon-Min, Gil;Kwon Su, Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.141-148
    • /
    • 2023
  • The algebraic reconstruction technique is one of the reconstruction methods in CT and shows good image quality against noise-dominant conditions. The number of iteration is one of the key factors determining the execution time for the algebraic reconstruction technique. However, there are some rules for determining the number of iterations that result in more than a few hundred iterations. Thus, the rules are difficult to apply in practice. In this study, we proposed a method to determine the number of iterations for practical applications. The reconstructed image quality shows slow convergence as the number of iterations increases. Image quality 𝜖 < 0.001 was used to determine the optimal number of iteration. The Shepp-Logan head phantom was used to obtain noise-free projection and projections with noise for 360, 720, and 1440 views were obtained using Geant4 Monte Carlo simulation that has the same geometry dimension as a clinic CT system. Images reconstructed by around 10 iterations within the stop condition showed good quality. The method for determining the iteration number is an efficient way of replacing the best image-quality-based method, which brings over a few hundred iterations.

Comparison of Algorithms for Generating Parametric Image of Cerebral Blood Flow Using ${H_2}^{15}O$ PET Positron Emission Tomography (${H_2}^{15}O$ PET을 이용한 뇌혈류 파라메트릭 영상 구성을 위한 알고리즘 비교)

  • Lee, Jae-Sung;Lee, Dong-Soo;Park, Kwang-Suk;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.5
    • /
    • pp.288-300
    • /
    • 2003
  • Purpose: To obtain regional blood flow and tissue-blood partition coefficient with time-activity curves from ${H_2}^{15}O$ PET, fitting of some parameters in the Kety model is conventionally accomplished by nonlinear least squares (NLS) analysis. However, NLS requires considerable compuation time then is impractical for pixel-by-pixel analysis to generate parametric images of these parameters. In this study, we investigated several fast parameter estimation methods for the parametric image generation and compared their statistical reliability and computational efficiency. Materials and Methods: These methods included linear least squres (LLS), linear weighted least squares (LWLS), linear generalized least squares (GLS), linear generalized weighted least squares (GWLS), weighted Integration (WI), and model-based clustering method (CAKS). ${H_2}^{15}O$ dynamic brain PET with Poisson noise component was simulated using numerical Zubal brain phantom. Error and bias in the estimation of rCBF and partition coefficient, and computation time in various noise environments was estimated and compared. In audition, parametric images from ${H_2}^{15}O$ dynamic brain PET data peformed on 16 healthy volunteers under various physiological conditions was compared to examine the utility of these methods for real human data. Results: These fast algorithms produced parametric images with similar image qualify and statistical reliability. When CAKS and LLS methods were used combinedly, computation time was significantly reduced and less than 30 seconds for $128{\times}128{\times}46$ images on Pentium III processor. Conclusion: Parametric images of rCBF and partition coefficient with good statistical properties can be generated with short computation time which is acceptable in clinical situation.

Comparison Study of Image Quality of Direct and Indirect Conversion Digital Mammography System (직접 및 간접변환 방식의 디지털 유방 X선 촬영시스템의 영상화질 비교 연구)

  • Park, Hye-Suk;Oh, Yu-Na;Jo, Hee-Jeong;Kim, Sang-Tae;Choi, Yu-Na;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.239-245
    • /
    • 2010
  • The purpose of this study is to comprehensively compare and evaluate the characteristics of image quality for digital mammography systems which use a direct and indirect conversion detector. Three key metrics of image quality were evaluated for the direct and indirect conversion detector, the modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE), which describe the resolution, noise, and signal to noise performance, respectively. DQE was calculated by using a edge phantom for MTF determination according to IEC 62220-1-2 regulation. The contrast to noise ratio (CNR) was evaluated according to guidelines offered by the Korean Institute for Accreditation of Medical Image (KIAMI). As a result, the higher MTF and DQE was measured with direct conversion detector compared to indirect conversion detector all over spatial frequency. When the average glandular dose (AGD) was the same, direct conversion detector showed higher CNR value. The direct conversion detector which has higher DQE value all over spatial frequency would provide the potential benefits for both improved image quality and lower patient dose in digital mammography system.

Quantitative Assessment of Myocardial Infarction by In-111 Antimyosin Antibody (In-111-Antimyosin 항체를 이용한 심근경색의 정량적 평가)

  • Lee, Myung-Chul;Lee, Kyung-Han;Choi, Yoon-Ho;Chung, June-Key;Park, Young-Bae;Koh, Chang-Soon;Moon, Dae-Hyuk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 1991
  • Infarct size is a major determinant of prognosis after acute myocardial infarction. Up to date, however, clinically available tests to estimate this size have not been sufficiently accurate. Twelve lead electrocardiogram and wall motion abnormality measurement are not quantitative, and creatine phophokinase (CPK) measurement is inaccurate in the presence of reperfusion or right ventricular infarction. Methods have been developed to localize and size acute myocardial infarcts with agents that are selectively sequestered in areas of myocardial damage, but previously used agents have lacked sufficient specificity. Antibodies that bind specifically only to damaged myocardial cells may resolve this problem and provide an accurate method for noninvasively measuring infarct size. We determined the accuracy with which infarcted myocardial mass can be measured using single photon emission computed tomography (SPECT) and radiolabeled antimyosin antibodies. Seven patients with acute myocardial infarction and one stable angina patient were injected with 2 mCi of Indium-111 labeled antimyosin antibodies. Planar image and SPECT was performed 24 hours later. None of the patients had history of prior infarcts, and none had undergone reperfusion techniques prior to the study, which was done within 4 days of the attack. Planar image showed all infarct patients to have postive uptakes in the cardiac region. The location of this uptake correlated to the infarct site as indicated by electrocardiography in most of the cases. The angina patient, however, showed no such abnormal uptake. Infarct size was determined from transverse slices of the SPECT image using a 45% threshold value obtained from a phantom study. Measured infarct size ranged from 40 to 192 gr. There was significant correlation between the infarct size measured by SPECT and that estimated from serial measurements of CPK (r=0.73, p<0.05). These date suggest that acute myocardial infarct size can be accurately measured from SPECT Indium-111 antimyosin imaging. This method may be especially valuable in situations where other methods are unreliable, such as early reperfusion technique, right ventricular infarct or presence of prior infarcts.

  • PDF

Quality Reporting of Radiomics Analysis in Mild Cognitive Impairment and Alzheimer's Disease: A Roadmap for Moving Forward

  • So Yeon Won;Yae Won Park;Mina Park;Sung Soo Ahn;Jinna Kim;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.21 no.12
    • /
    • pp.1345-1354
    • /
    • 2020
  • Objective: To evaluate radiomics analysis in studies on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using a radiomics quality score (RQS) system to establish a roadmap for further improvement in clinical use. Materials and Methods: PubMed MEDLINE and EMBASE were searched using the terms 'cognitive impairment' or 'Alzheimer' or 'dementia' and 'radiomic' or 'texture' or 'radiogenomic' for articles published until March 2020. From 258 articles, 26 relevant original research articles were selected. Two neuroradiologists assessed the quality of the methodology according to the RQS. Adherence rates for the following six key domains were evaluated: image protocol and reproducibility, feature reduction and validation, biologic/clinical utility, performance index, high level of evidence, and open science. Results: The hippocampus was the most frequently analyzed (46.2%) anatomical structure. Of the 26 studies, 16 (61.5%) used an open source database (14 from Alzheimer's Disease Neuroimaging Initiative and 2 from Open Access Series of Imaging Studies). The mean RQS was 3.6 out of 36 (9.9%), and the basic adherence rate was 27.6%. Only one study (3.8%) performed external validation. The adherence rate was relatively high for reporting the imaging protocol (96.2%), multiple segmentation (76.9%), discrimination statistics (69.2%), and open science and data (65.4%) but low for conducting test-retest analysis (7.7%) and biologic correlation (3.8%). None of the studies stated potential clinical utility, conducted a phantom study, performed cut-off analysis or calibration statistics, was a prospective study, or conducted cost-effectiveness analysis, resulting in a low level of evidence. Conclusion: The quality of radiomics reporting in MCI and AD studies is suboptimal. Validation is necessary using external dataset, and improvements need to be made to feature reproducibility, feature selection, clinical utility, model performance index, and pursuits of a higher level of evidence.

Performance Evaluation of Siemens CTI ECAT EXACT 47 Scanner Using NEMA NU2-2001 (NEMA NU2-2001을 이용한 Siemens CTI ECAT EXACT 47 스캐너의 표준 성능 평가)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.259-267
    • /
    • 2004
  • Purpose: NEMA NU2-2001 was proposed as a new standard for performance evaluation of whole body PET scanners. in this study, system performance of Siemens CTI ECAT EXACT 47 PET scanner including spatial resolution, sensitivity, scatter fraction, and count rate performance in 2D and 3D mode was evaluated using this new standard method. Methods: ECAT EXACT 47 is a BGO crystal based PET scanner and covers an axial field of view (FOV) of 16.2 cm. Retractable septa allow 2D and 3D data acquisition. All the PET data were acquired according to the NEMA NU2-2001 protocols (coincidence window: 12 ns, energy window: $250{\sim}650$ keV). For the spatial resolution measurement, F-18 point source was placed at the center of the axial FOV((a) x=0, and y=1, (b)x=0, and y=10, (c)x=70, and y=0cm) and a position one fourth of the axial FOV from the center ((a) x=0, and y=1, (b)x=0, and y=10, (c)x=10, and y=0cm). In this case, x and y are transaxial horizontal and vertical, and z is the scanner's axial direction. Images were reconstructed using FBP with ramp filter without any post processing. To measure the system sensitivity, NEMA sensitivity phantom filled with F-18 solution and surrounded by $1{\sim}5$ aluminum sleeves were scanned at the center of transaxial FOV and 10 cm offset from the center. Attenuation free values of sensitivity wire estimated by extrapolating data to the zero wall thickness. NEMA scatter phantom with length of 70 cm was filled with F-18 or C-11solution (2D: 2,900 MBq, 3D: 407 MBq), and coincidence count rates wire measured for 7 half-lives to obtain noise equivalent count rate (MECR) and scatter fraction. We confirmed that dead time loss of the last flame were below 1%. Scatter fraction was estimated by averaging the true to background (staffer+random) ratios of last 3 frames in which the fractions of random rate art negligibly small. Results: Axial and transverse resolutions at 1cm offset from the center were 0.62 and 0.66 cm (FBP in 2D and 3D), and 0.67 and 0.69 cm (FBP in 2D and 3D). Axial, transverse radial, and transverse tangential resolutions at 10cm offset from the center were 0.72 and 0.68 cm (FBP in 2D and 3D), 0.63 and 0.66 cm (FBP in 2D and 3D), and 0.72 and 0.66 cm (FBP in 2D and 3D). Sensitivity values were 708.6 (2D), 2931.3 (3D) counts/sec/MBq at the center and 728.7 (2D, 3398.2 (3D) counts/sec/MBq at 10 cm offset from the center. Scatter fractions were 0.19 (2D) and 0.49 (3D). Peak true count rate and NECR were 64.0 kcps at 40.1 kBq/mL and 49.6 kcps at 40.1 kBq/mL in 2D and 53.7 kcps at 4.76 kBq/mL and 26.4 kcps at 4.47 kBq/mL in 3D. Conclusion: Information about the performance of CTI ECAT EXACT 47 PET scanner reported in this study will be useful for the quantitative analysis of data and determination of optimal image acquisition protocols using this widely used scanner for clinical and research purposes.

Performance Characteristics of 3D GSO PET/CT Scanner (Philips GEMINI PET/DT) (3차원 GSO PET/CT 스캐너(Philips GEMINI PET/CT의 특성 평가)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Byeong-Il;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.4
    • /
    • pp.318-324
    • /
    • 2004
  • Purpose: Philips GEMINI is a newly introduced whole-body GSO PET/CT scanner. In this study, performance of the scanner including spatial resolution, sensitivity, scatter fraction, noise equivalent count ratio (NECR) was measured utilizing NEMA NU2-2001 standard protocol and compared with performance of LSO, BGO crystal scanner. Methods: GEMINI is composed of the Philips ALLEGRO PET and MX8000 D multi-slice CT scanners. The PET scanner has 28 detector segments which have an array of 29 by 22 GSO crystals ($4{\times}6{\times}20$ mm), covering axial FOV of 18 cm. PET data to measure spatial resolution, sensitivity, scatter fraction, and NECR were acquired in 3D mode according to the NEMA NU2 protocols (coincidence window: 8 ns, energy window: $409[\sim}664$ keV). For the measurement of spatial resolution, images were reconstructed with FBP using ramp filter and an iterative reconstruction algorithm, 3D RAMLA. Data for sensitivity measurement were acquired using NEMA sensitivity phantom filled with F-18 solution and surrounded by $1{\sim}5$ aluminum sleeves after we confirmed that dead time loss did not exceed 1%. To measure NECR and scatter fraction, 1110 MBq of F-18 solution was injected into a NEMA scatter phantom with a length of 70 cm and dynamic scan with 20-min frame duration was acquired for 7 half-lives. Oblique sinograms were collapsed into transaxial slices using single slice rebinning method, and true to background (scatter+random) ratio for each slice and frame was estimated. Scatter fraction was determined by averaging the true to background ratio of last 3 frames in which the dead time loss was below 1%. Results: Transverse and axial resolutions at 1cm radius were (1) 5.3 and 6.5 mm (FBP), (2) 5.1 and 5.9 mm (3D RAMLA). Transverse radial, transverse tangential, and axial resolution at 10 cm were (1) 5.7, 5.7, and 7.0 mm (FBP), (2) 5.4, 5.4, and 6.4 mm (3D RAMLA). Attenuation free values of sensitivity were 3,620 counts/sec/MBq at the center of transaxial FOV and 4,324 counts/sec/MBq at 10 cm offset from the center. Scatter fraction was 40.6%, and peak true count rate and NECR were 88.9 kcps @ 12.9 kBq/mL and 34.3 kcps @ 8.84 kBq/mL. These characteristics are better than that of ECAT EXACT PET scanner with BGO crystal. Conclusion: The results of this field test demonstrate high resolution, sensitivity and count rate performance of the 3D PET/CT scanner with GSO crystal. The data provided here will be useful for the comparative study with other 3D PET/CT scanners using BGO or LSO crystals.