• Title/Summary/Keyword: perturbed system

Search Result 227, Processing Time 0.022 seconds

Phase Behaviors of Binary Protein Systems: Consideration of Structural Effects

  • Kim, Sang-Gon;Kong, Sung-Ho;Bae, Young-Chan;Kim, Sun-Joon
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.241-249
    • /
    • 2003
  • A molecular-thermodynamic model to describe the salt-induced protein precipitation is developed based on the perturbation theory. We employed the modified perturbed hard-sphere-chain (PHSC) equation of state for copolymer mixtures to take into account the pre-aggregation effect among protein particles. Hypothetical pressure-composition diagrams are computed with various size differences and salt concentrations. The precipitation behaviors are also studied for various types of pre-aggregation effect for the given systems.

Role of Open Channels in Overlapping Resonances Studied by Multichannel Quantum Defect Theory in Systems Involving 2 Nondegenerate Closed and Many Open Channels

  • Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3201-3211
    • /
    • 2010
  • Previous work on the phase-shifted version of the multichannel quantum-defect theory (MQDT) for a system involving 2 closed and many open channels (Lee, C.-W. Bull. Korean Chem. Soc. 2010, 31, 1669) was extended to obtain the formulae of the spectral shape parameters with the structure of a pole extracted explicitly for general cases only limited by 2 non-degenerate closed channels. The theory was applied to the narrow $6p_{1/2,3/2}np$ J = 1 autoionizing Rydberg series in barium perturbed by the $6p_{3/2}nf$ states obtained by de Graaff et al.

Improved Concurrent Subspace Optimization Using Automatic Differentiation (자동미분을 이용한 분리시스템동시최적화기법의 개선)

  • 이종수;박창규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.359-369
    • /
    • 1999
  • The paper describes the study of concurrent subspace optimization(CSSO) for coupled multidisciplinary design optimization (MDO) techniques in mechanical systems. This method is a solution to large scale coupled multidisciplinary system, wherein the original problem is decomposed into a set of smaller, more tractable subproblems. Key elements in CSSO are consisted of global sensitivity equation(GSE), subspace optimization (SSO), optimum sensitivity analysis(OSA), and coordination optimization problem(COP) so as to inquiry valanced design solutions finally, Automatic differentiation has an ability to provide a robust sensitivity solution, and have shown the numerical numerical effectiveness over finite difference schemes wherein the perturbed step size in design variable is required. The present paper will develop the automatic differentiation based concurrent subspace optimization(AD-CSSO) in MDO. An automatic differentiation tool in FORTRAN(ADIFOR) will be employed to evaluate sensitivities. The use of exact function derivatives in GSE, OSA and COP makes Possible to enhance the numerical accuracy during the iterative design process. The paper discusses how much influence on final optimal design compared with traditional all-in-one approach, finite difference based CSSO and AD-CSSO applying coupled design variables.

  • PDF

The Interpretation Uncertain Bound for the Uncertain Linear Systems via Lyapunov Equations (Lyapunov 방정식을 이용한 불확실한 선형 시스템의 섭동 유계 해석)

  • Cho, Do-Hyoun;Lee, Sang-Chul;Choi, Jin-Taik;Lee, Sang-Hun;Lee, Jong-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.485-486
    • /
    • 2007
  • In this paper, we use Lyapunov equations and functions to consider the linear systems with perturbed system matrices. And we consider that what choice of Lyapunov function V would allow the largest perturbation and still guarantee that V is negative definite. We find that this is determined by testing for the existence of solutions to a related quadratic equation with matrix coefficients and unknowns the so-called matrix Riccati equation.

  • PDF

A Nonlinear Theory for the Oregonator Model with an External Input

  • Ryu Moon Hee;Lee Dong J.;Lee Sangyoub;Shin Kook Joe
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.488-496
    • /
    • 1994
  • An approximate nonlinear theory of the Oregonator model is obtained with the aid of an ordinary perturbation method when the system is perturbed by some kinds of external input. The effects of internal and external parameters on the oscillations are discussed in detail by taking specific values of the parameters. A simple approximate solution for the Oregonator model under the influence of a constant input is obtained and the result is compared with the numerical result. For other types of external inputs the approximate solutions up to the fourth order expansion are compared with the numerical results. For a periodic input, we found that the entrainment depends crucially on the difference between the internal and external frequencies near the bifurcation point.

Robust Hcontrol applied on a fixed wing unmanned aerial vehicle

  • Uyulan, Caglar;Yavuz, Mustafa Tolga
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.371-389
    • /
    • 2019
  • The implementation of a robust $H_{\infty}$ Control, which is numerically efficient for uncertain nonlinear dynamics, on longitudinal and lateral autopilots is realised for a quarter scale Piper J3-Cub model accepted as an unmanned aerial vehicle (UAV) under the condition of sensor noise and disturbance effects. The stability and control coefficients of the UAV are evaluated through XFLR5 software, which utilises a vortex lattice method at a predefined flight condition. After that, the longitudinal trim point is computed, and the linearization process is performed at this trim point. The "${\mu}$-Synthesis"-based robust $H_{\infty}$ control algorithm for roll, pitch and yaw displacement autopilots are developed for both longitudinal and lateral linearised nonlinear dynamics. Controller performances, closed-loop frequency responses, nominal and perturbed system responses are obtained under the conditions of disturbance and sensor noise. The simulation results indicate that the proposed control scheme achieves robust performance and guarantees stability under exogenous disturbance and measurement noise effects and model uncertainty.

INVARIANT GRAPH AND RANDOM BONY ATTRACTORS

  • Fateme Helen Ghane;Maryam Rabiee;Marzie Zaj
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.255-271
    • /
    • 2023
  • In this paper, we deal with random attractors for dynamical systems forced by a deterministic noise. These kind of systems are modeled as skew products where the dynamics of the forcing process are described by the base transformation. Here, we consider skew products over the Bernoulli shift with the unit interval fiber. We study the geometric structure of maximal attractors, the orbit stability and stability of mixing of these skew products under random perturbations of the fiber maps. We show that there exists an open set U in the space of such skew products so that any skew product belonging to this set admits an attractor which is either a continuous invariant graph or a bony graph attractor. These skew products have negative fiber Lyapunov exponents and their fiber maps are non-uniformly contracting, hence the non-uniform contraction rates are measured by Lyapnnov exponents. Furthermore, each skew product of U admits an invariant ergodic measure whose support is contained in that attractor. Additionally, we show that the invariant measure for the perturbed system is continuous in the Hutchinson metric.

FORMULATION OF NEAR AND FAR ACOUSTIC FIELD FROM AN INCOMPRESSIBLE FLOW FLRCTUATION AROUND THE RIGID WALL

  • Ryu, Ki-Wahn;Lee, Duck-Joo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.59-62
    • /
    • 1996
  • A numerical study of a two-dimensional acoustic field is carride ort for a spinning vortex pair located neat a wall to investigate the effect of the wall from the spinning quadrupole source in unsteady vortical flows. Based on the known incompressible flow field, the perturbed compressible acoustic terms derived from the Euler equations are calculated. Non-reflecting boundary conditions on the free field and the solid boundary conditions are developed for a generalized curvilinear coordinates system to investigate the effect of a curced wall. It is concluded that the sound generated by the quadrupole sources of unsteady vortical flows in the presence of a flat wall or a circular cylinder can be calculated by using the source terms of hydrodynamic flow fluctuations in both near and far acoustic fields simultaneously.

  • PDF

EXISTENCE AND EXPONENTIAL STABILITY OF NEUTRAL STOCHASTIC PARTIAL INTEGRODIFFERENTIAL EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTION WITH IMPULSIVE EFFECTS

  • CHALISHAJAR, DIMPLEKUMAR;RAMKUMAR, K.;ANGURAJ, A.
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.1_2
    • /
    • pp.9-26
    • /
    • 2022
  • The purpose of this work is to study the existence and continuous dependence on neutral stochastic partial integrodifferential equations with impulsive effects, perturbed by a fractional Brownian motion with Hurst parameter $H{\in}({\frac{1}{2}},\;1)$. We use the theory of resolvent operators developed in Grimmer [19] to show the existence of mild solutions. Further, we establish a new impulsive-integral inequality to prove the exponential stability of mild solutions in the mean square moment. Finally, an example is presented to illustrate our obtained results.

Robust Nonlinear $H_2$/$H_{\infty}$Control for a Parallel Inverted Pendulum (병렬형 역진자와 비선형 $H_2$/H_{\infty}강인제어)

  • Han, Seong-Ik;Kim, Jong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1065-1074
    • /
    • 2000
  • A robust nonlinear $H_2$/$H_{\infty}$ control method for a parallel inverted pendulum with structured perturbation and dry friction is proposed. By the random input describing function techniques, the nonlinear dry friction is approximated into the quasi-linear system. Introducing the quadratic robustness theorem, the robust $H_2$/$H_{\infty}$ control system is constructed for the quasi-linear perturbed system. But it is difficult to design a controller due to the nonlinear correction term in Riccati equation. With some transformations on the Riccati equation containing nonlinear correction term, the design of the robust nonlinear controller can be done easily. Hence when the stiffness and mass of the parallel inverted pendulum vary in certain ranges, the proposed control scheme has the robustness for both the structured perturbation and dry friction. The results of computer simulation show the effectiveness of our proposed control method.