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EXISTENCE AND EXPONENTIAL STABILITY OF NEUTRAL
STOCHASTIC PARTIAL INTEGRODIFFERENTIAL

EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN
MOTION WITH IMPULSIVE EFFECTS

DIMPLEKUMAR CHALISHAJAR∗, K. RAMKUMAR, A. ANGURAJ

Abstract. The purpose of this work is to study the existence and contin-
uous dependence on neutral stochastic partial integrodifferential equations
with impulsive effects, perturbed by a fractional Brownian motion with
Hurst parameter H ∈ ( 1

2
, 1). We use the theory of resolvent operators de-

veloped in Grimmer [19] to show the existence of mild solutions. Further,
we establish a new impulsive-integral inequality to prove the exponential
stability of mild solutions in the mean square moment. Finally, an example
is presented to illustrate our obtained results.
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1. Introduction

Stochastic differential equations have been investigated as mathematical mod-
els to describe the dynamical behavior of real life phenomena. It is essential to
take into account the environmental disturbances as well as the time delay while
constructing realistic models in the area of engineering, biology, etc. The quali-
tative behavior of stochastic delay differential equations, regarding the stability,
existence and uniqueness of solutions, has been studied by many investigators,
(see [1, 2, 3, 4, 8, 9, 12] and references therein). In particular the existence of the
exponential and asymptotic stability of mild solutions of stochastic integrodif-
ferential equations with delays has been established [16, 17].

On the other hand, a fractional Brownian motion (fBm) is a Gaussian sto-
chastic process, which varies pointedly from semi-martingales and a standard
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Brownian motion to other processes usually utilized in the theory of stochas-
tic processes. An fBm depends on the Hurst index H ∈ (0, 1), the parameter
introduced by Kolmogorov [21]. We refer to [24] for more detail on fBm. As
a centered Gaussian process, it is examined by its stationary increments and
the medium- or long-memory property. The fBm reduces to standard Brownian
motion when H = 1

2 . However, when H 6= 1
2 , the fBm acts in a entirely different

way, that is, it is neither a Markov process nor a semi-martingale. Recently, the
theory of differential equations driven by a fBm has been investigated intensively
by many researchers (see [5]-[18] and references therein).

This model gives arbitrage opportunities. In 2003, Cheridito [13] proved that
even the market allows for arbitrage strategies, these strategies cannot be con-
structed in practice. In fact, he proved that if there is a minimum amount of time
between transactions, the arbitrage opportunities disappear. In 2006, Guasoni
[20] proved that the arbitrage opportunities also disappear under transaction
costs. To achieve an arbitrage, at some point t0 we have to start trading. This
decision generates a transaction cost that must be recovered at a later time, and
this is possible only if the asset price moves enough in the future. Hence, if at all
times there is a remote possibility of arbitrary small price changes, then down-
side risk cannot be eliminated, and arbitrage is impossible. The above results by
Cheridito and Guasoni open a new scenario, where the fBm can be appropriate
for stock price modeling if we assume that the non-existence of arbitrage strate-
gies is not due to the market, but to the existence of restrictions on the trading
strategies. Nevertheless, the dependence of the implied volatility on time to
maturity (term structure) is not well explained by classical stochastic volatility
models. In practice, the decreasing of the small amplitude when the time to ma-
turity increases, turns out to be much slower than it goes according to stochastic
volatility models. With this aim, in 2012, Comte, Coutin, and Renault [14] have
proposed stochastic volatility models based on the fBm. This model allows us
to explain the observed long-time behavior of the implied volatility. Thus the
fractional stochastic volatility models allow us to explain the long-time behavior
of the implied volatility.

Motivated by this works, we will generalize the existence and stability of neu-
tral impulsive stochastic integrodifferential equations under Lipschitz condition.
Moreover, we use the theory of resolvent operator and through the continuous
dependence on the initial values by means of Corollary of Bihari’s inequality.
In order to fill this gap, this paper studies the existence and exponential stability
of mild solutions of the following neutral stochastic partial integrodifferential
equations driven by fractional Brownian motion with impulsive effects of the
form:

d [u(t) + p(t, ut)]

= A [u(t) + p(t, ut)] dt+

[ ∫ t

0

B(t− s) [u(s) + p(s, us)] ds
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+ f(t, ut)

]
dt+ σ(t)dBHQ(t), t ∈ [0, T ], t 6= tk, (1)

∆u(tk) = u(t+k )− u(t−k ) = Ik(u(tk)), t = tj , k = 1, 2, ..., (2)
u(t) = φ(t), −τ ≤ t ≤ 0, (3)

where A is the infinitesimal generator of a strongly continuous semigroup (T (t)),
t ≥ 0 of bounded linear operators in a Hilbert space Y; BHQ is a fractional Brown-
ian motion with Hurst parameter H ∈ ( 12 , 1) on a real and separable Hilbert
space Y. f, p : [0,+∞) × X → X, σ : [0,+∞) → L0

Q(Y, X), Ik : X → X

are appropriate functions specified later. The impulsive moments tk satisfies
0 = t0 < t1 < · · · , limk→∞ tk = ∞, u(t+k ) and u(t+k ) denote the right and left
limits of u(t) at time tk. And ∆u(tk) = u(t+k ) − u(t−k ) represents the jump in
the state u at time tk, where Ik determines the size of the jump.

2. Preliminaries

Let us start with some basic facts on fractional Brownian motion (fBm) and
Wiener integral with respect to fBm. Additionally, we introduce the resolvent
operator of infinitesimal generator which is the basis of our study.
A two-sided one-dimensional fBm βH = βH(t) with Hurst parameter H ∈ (0, 1) is
a centered Gaussian process with the covariance function

RH(s, t) = E
[
βH(t)βH(s)

]
=

1

2
(t2H + s2H − |t− s|2H)

In this paper, we consider, H > 1
2 , then βH(t) has the following representation

βH(t) =

∫ t

0

KH(t, s)dβ(s),

where β(s) is a standard Brownian motion and K(t, s) is the kernel given by

KH(t, s) = cHs
1
2−H

∫ t

s

(u− s)H−
3
2uH−

1
2 du, t ≥ s,

which cH is a non-negative constant with respect to H.
For the deterministic function φ ∈ L2([0, T ]), the fractional Wiener integral of
φ with respect to βH is defined by∫ T

0

φ(s)dβH(s) =

∫ T

0

K∗Hφ(s)dβ(s),

where (K∗Hφ)(s) =

∫ t

0

φ(t)
∂K(t, s)

∂t
dt.

Let X and Y be two real separable Hilbert spaces. L(Y, X) denotes the space of all
bounded linear operators from Y into X. Let (Ω,F ,P) is a complete probability
space satisfying the usual conditions. E(·) denotes the mathematical expectation
with respect to P, Q is the non-negative self-adjoint operator in L(Y, Y), L0

Q is
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symbolized the space of all γ ∈ L(Y, X) such that γQ
1
2 is a Hilbert-Schmidt

operator and the norm is given by
‖γ‖2L0

Q (Y,X)
= tr (γQγ∗) .

Then γ is called Q-Hilbert-Schmidt operator mapping from Y into X. en (n =
1, 2, ...) denote a complete orthonormal basis in Y and Q ∈ L(Y, X) is an operator
defined by Qen = λnen are non-negative real numbers. We define the infinite
dimensional fBm on Y with covariance Q as

BHQ(t) =

∞∑
n=1

βH
n(t)Q

1
2 en =

∞∑
n=1

√
σnβ

H
n(t)en, t ≥ 0.

where βH
n(t) (n = 1, 2...) are real, independent fBms. The process BHQ(t) is called

by Y-valued Q-fBm.
Now, we introduce the definition of the fractional Wiener integral of the function
φ : [0, T ] → L0

Q with respect to Q-fBm as follows∫ t

0

φ(s)dBHQ(s) =

∞∑
n=1

∫ t

0

φ(s)Q
1
2 endβ

H
n(s)

=

∞∑
n=1

∫ t

0

(
K∗H(φQ

1
2 en)

)
(s)dβn(s),

where βn is the standard Brownian motion with respect to βH
n.

Lemma 2.1. If φ : [0, T ] → L0
Q(Y, X) satisfies

∫ t

0

‖φ(s)‖2L0
Q
ds < ∞. Then the

integral
∫ t

0

φ(s)dBHQ(s) is well defined as an X-valued random variable and we
have

E

∥∥∥∥∫ t

0

φ(s)dBHQ(s)

∥∥∥∥2 ≤ 2Ht2H−1

∫ t

0

‖φ(s)‖2L0
Q
ds.

For more details for fractional Brownian motion and fractional Wiener integral,
one can see [25, 26].

In the present section, we recall some definitions, notations and properties
needed in the sequel. In what follows, X will denote a Banach space, A and
B(t) are closed linear operators on X. Y represents the Banach space D(A), the
domain of operator A, equipped with the graph norm

|y|Y := |Ay|+ |y| for y ∈ Y.

The notation C([0,+∞); Y) stands for the space of all continuous functions from
[0,+∞) into Y. We then consider the following Cauchy problem v′(t) = Av(t) +

∫ t

0

B(t− s)v(s)ds for t ≥ 0,

v(0) = v0 ∈ X.
(4)
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Definition 2.2. ([19]) A resolvent operator for Equation (4) is a bounded lin-
ear operator valued function R(t) ∈ L(X) for t ≥ 0, satisfying the following
properties:

(i) R(0) = I and ‖R(t)‖ ≤ Meβt for some constants M and β.
(ii) For each x ∈ X, R(t)x is strongly continuous for t ≥ 0.
(iii) For x ∈ Y, R(·)x ∈ C1([0,+∞); X) ∩ C([0,+∞); Y) and

R′(t)x = AR(t)x+

∫ t

0

B(t− s)R(s)xds

= R(t)Ax+

∫ t

0

R(t− s)B(s)xds, for t ≥ 0. (5)

The resolvent operator plays an important role to study the existence of so-
lutions and to establish a variation of constants formula for nonlinear systems.
For this reason, we need to know when the linear system (4) has a resolvent
operator. For more details on resolvent operator, we refer to [19].
In what follows we suppose the following assumptions:
(H1) A is the infinitesimal generator of a C0-semigroup on X.
(H2) For all t ≥ 0, B(t) is a continuous linear operator from (Y, | · |Y) into
(X, | · |X). Moreover, there exists an integrable function c : [0,+∞) → R+ such
that for any y ∈ Y, t 7→ B(t)k belongs to W 1,1([0,+∞), X) and∣∣∣∣ ddtB(t)(t)y

∣∣∣∣
X

≤ c(t)|y|Y for y ∈ Y and t ≥ 0.

Theorem 2.3. ([19]) Assume that hypotheses (H1) and (H2) hold. Then
Equation (4) admits a resolvent operator (R(t))t≥0.
Theorem 2.4. ([23]) Assume that hypotheses (H1) and (H2) hold. Let R(t) be
a compact operator for t > 0. Then, the corresponding resolvent operator R(t)
of Equation (4) is continuous for t > 0 in the operator norm, namely, for all
t0 > 0, it holds that limh→0 ‖R(t0 + h)−R(t0)‖ = 0.
In the sequel, we recall some results on the existence of solutions for the following
integrodifferential equation v′(t) = Av(t) +

∫ t

0

B(t− s)v(s)ds+ q(t) for t ≥ 0,

v(0) = v0 ∈ X,
(6)

where q : [0,+∞[→ X is a continuous function.
Definition 2.5. ([19]) A continuous function v : [0,+∞) → X is said to be a
strict solution of Equation (6) if

(i) v ∈ C1([0,+∞); X) ∩ C([0,+∞); Y),
(ii) v satisfies Equation (6) for t ≥ 0.

Remark 2.1. From this definition we deduce that v(t) ∈ D(A), and the function
B(t− s)v(s) is integrable, for all t > 0 and s ∈ [0,+∞).
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Theorem 2.6. ([19]) Assume that (H1)-(H2) hold. If v is a strict solution of
Equation (6), then the following variation of constants formula holds

v(t) = R(t)v0 +

∫ t

0

R(t− s)q(s)ds for t ≥ 0. (7)

3. Main results

Definition 3.1. If u : [−τ, T ] → X is a stochastic process and
(i) u(t) is measurable, Ft-adapted, and has cadlag paths almost surely for all
−τ ≤ t ≤ T .
(ii) u(t) = φ(t), −τ ≤ t ≤ 0.
(iii) u satisfies the following integral equation:

u(t) = R(t) [φ(0) + p(0, φ)]− p(t, ut) +

∫ t

0

R(t− s)f(s, us)ds

+

∫ t

0

R(t− s)σ(s)dBHQ(s) +
∑

0<tk<t

R(t− tk)Ik(u(tk)) (8)

To guarantee the existence and uniqueness of the solution, we impose some
hypotheses:

(H3) There exist constants λ > 0 and M ≥ 1 such that ‖R(t)‖ ≤ Me−λt.
(H4) f(t, ·) satisfy the following Lipschitz conditions for all t ∈ [0, T ] and

u, v ∈ X

‖f(t, ut)− f(t, vt)‖2 ≤ K2
f ‖u− v‖2t

for some positive constants K2
f . We further assume that, for t ≥ 0,

f(t, 0) = k0, where k0 > 0 is a constant.
(H5) The function p satisfies

‖p(t, ut)− p(t, vt)‖2 ≤ K2
p ‖u− v‖2t

and p(t, 0) = 0, for all t ∈ [0, T ], u, v ∈ X.
(H6) The function p is continuous in the quadratic mean sense:

lim
t→s

‖p(t, ut)− p(t, us)‖2 = 0, u ∈ X.

(H7) A function σ : [0,+∞) → L0
Q(Y, X) satisfies

(i)

∫ t

0

‖σ(s)‖2L0
Q
ds < ∞, ∀t ∈ [0, T ],

(ii)
∑∞

n=1

∥∥σQ1/2en∥∥L([0,T ];X)
< ∞,

(iii)
∑∞

n=1

∥∥σQ1/2en∥∥Y is uniformly convergent for t ∈ [0, T ].
(H8) The function Ik ∈ C(X, X) for all u, v ∈ X,

‖Ik(u(tk))− Ik(v(tk))‖2 ≤ q2k ‖u− v‖2t , where qj is a constant and k = 1, 2, ...
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Theorem 3.2. Suppose that (H1)-(H7) hold. Then for all T > 0, system
(1)-(3) has a unique mild solution on [−τ, T ] provided that

2M2
∑∞

k=1 q
2
k

(1− k)2
< 1 (9)

where k = Kp.
Proof. Define the operator Θ : BT → BT by
Θ(u(t)) = φ(t), for t ∈ [−τ, T ],

Θ(u(t)) = R(t) [φ(0) + p(0, φ)]− p(t, ut) +

∫ t

0

R(t− s)f(s, us)ds

+

∫ t

0

R(t− s)σ(s)dBHQ(s) +
∑

0<tk<t

R(t− tk)Ik(u(tk)), for t ∈ [−τ, T ].

=

5∑
i=1

∆i(t).

Now, to prove the existence of mild solutions of (1)-(3), it is sufficient to show
that Θ has a fixed point.
Step 1:First, we verify that t → Θ(u(t)) is Cadillac on [0, T ]. Let |γ| be small
enough, for u ∈ BT , 0 < t < T , Then

E ‖(Θu)(t+ γ)− (Θu)(t)‖2X ≤ 5

5∑
i=1

E ‖∆i(t+ γ)−∆i(t)‖2X .

We can easily see that E ‖∆i(t+ γ)−∆i(t)‖2X → 0, i = 1, 2, 3 as γ → 0. For the
case i = 5, Then we have

E ‖∆5(t+ γ)−∆5(t)‖2

≤ 2E

∥∥∥∥ ∑
0<tk<t

[R(t+ γ − tk)−R(t− tk)] Ik(u(tk))

∥∥∥∥2
+ 2E

∥∥∥∥ ∑
t<tk<t+γ

[R(t+ γ − tk)] Ik(u(tk))

∥∥∥∥2
≤ 2

∑
0<tk<t

E

∥∥∥∥ [R(t+ γ − tk)−R(t− tk)]

∥∥∥∥2 [q2kE ‖u(tk)‖2
]

+ 2
∑

t<tk<t+γ

E

∥∥∥∥ [R(t+ γ − tk)]

∥∥∥∥2 [q2kE ‖u(tk)‖2
]

→ 0 as |γ| → 0.

Further, using Lemma 2.1, we get

E ‖∆4(t+ γ)−∆4(t)‖2 ≤ 2E

∥∥∥∥∫ t

0

[R(t+ γ − s)−R(t− s)]σ(s)dBHQ(s)

∥∥∥∥2
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+ 2E

∥∥∥∥∫ t+γ

t

[R(t+ γ − s)]σ(s)dBHQ(s)

∥∥∥∥2
= J1 + J2.

+ 2Ht2H−1

∫ t+γ

0

‖R(t+ γ − s)‖2L0
Q
ds

By (H3) and (H7), we have

J1 ≤ 2Ht2H−1

∫ t

0

‖R(t+ γ − s)−R(t− s)σ(s)‖2L0
Q
ds

≤ 4M2HT 2H−1

∫ t

0

e2λs
(
e−2λ(t+γ) + e−2λt

)
‖σ(s)‖2L0

Q
ds

≤ 4M2HT 2H−1

∫ ∞

0

e2λs ‖σ(s)‖2L0
Q
ds.

and

J2 ≤ 2Ht2H−1

∫ t

0

‖R(t+ γ − s)σ(s)‖2L0
Q
ds

≤ 2M2HT 2H−1

∫ ∞

0

e2λs ‖σ(s)‖2L0
Q
ds.

Hence, we have

E ‖∆4(t+ γ)−∆4(t)‖2 → 0 as |γ| → 0.

Hence, the above argument imply that t → Θ(u(t)) is Cadillac on [0, T ] a.s.
Step 2: Next, we will verify that Θ is a contraction mapping in BT1

with some
T1 < T to be specified later. Let u, v ∈ BT and t ∈ [0, T ], we have

E ‖Θ(u(t))−Θ(v(t))‖2 ≤ 1

k
E ‖p(t, ut)− p(t, vt)‖2

+
2

1− k
E

∥∥∥∥∫ t

0

R(t− s) [f(s, us)− f(s, vs)] ds

∥∥∥∥2
+

2

1− k
E

∥∥∥∥ ∑
0<tk<t

R(t− tk) [Ik(u(tk))− Ik(v(tk))]

∥∥∥∥2.
By using Holder’s inequality, together with (H4), (H5) and (H8), we get

E ‖Θ(u(t))−Θ(v(t))‖2 ≤ kE ‖u− v‖2t +
2

1− k
M2tK2

f

∫ t

0

E ‖u− v‖2s ds

+
2

1− k
M2

∞∑
k=1

q2kE ‖u− v‖2t

≤ kE ‖u− v‖2t +
2

1− k

[
M2tK2

f

] ∫ t

0

E ‖u− v‖2s ds
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+
2

1− k
M2

∞∑
k=1

q2kE ‖u− v‖2t .

Hence,
sup

s∈[−τ,T ]

E ‖Θ(u(t))−Θ(v(t))‖2 ≤ Γ(t) sup
s∈[−τ,T ]

E ‖u− v‖2s ,

where Γ(t) = k + 2
1−k

[
M2tK2

f

]
+ 2

1−kM
2
∑∞

k=1 q
2
k.

By Equation (7), we have Γ(0) = k + 2
1−kM

2
∑∞

k=1 q
2
k =

2M2 ∑∞
k=1 q2k

(1−k)2 < 1.
Hence, there exists 0 < T1 < T such that 0 < Γ(T1) < 1 and Θ is a contraction
mapping on BT1

. Therefore it is clear that it has a unique fixed point, which
is a mild solution of (1)-(3). By repeating a similar process the solution can
be extended to the entire interval [−τ, T ] in infinitely many steps. Hence the
proof. □

4. Stability

Definition 4.1. Let u, v be different mild solutions of (1)-(3) with initial val-
ues φ1 and φ2 respectively. If for all ϵ > 0, there exists δ > 0 such that
E ‖u(t)− v(t)‖2 ≤ ϵ when E ‖φ1 − φ2‖2 ≤ δ for all t ∈ [0, T ], then u(t) is said
to be stable in mean square.

Theorem 4.2. Assume that any two mild solutions of (1)-(3) are u(t) and v(t)
with initial values φ1 and φ2, respectively. Suppose that (H3)-(H6) are satisfied,
then the mild solution of (1)-(3) is stable in the quadratic mean.

Proof.

E ‖u(t)− v(t)‖2 ≤ 4E
∥∥∥R(t) [(φ1(0)− φ2(0)) + (p(0, φ1)− p(0, φ2))]

∥∥∥2
+ 4E

∥∥∥p(t, ut)− p(t, vt)
∥∥∥2

+ 4E

∥∥∥∥∫ t

0

R(t− s) [f(s, us)− f(s, vs)] ds

∥∥∥∥2
+ 4E

∥∥∥ ∑
0<tk<t

R(t− tk) [Ik(u(tk))− Ik(v(tk))]
∥∥∥2.

By using Holder’s inequality and (H3), (H4) and (H6), we get
E ‖u(t)− v(t)‖2 ≤ 4M2

[
1 +K2

p

]
E ‖φ1 − φ2‖2

+ 4

[
K2

p +M2
∞∑
k=1

q2k

]
E ‖u− v‖2t

+ 4M2
[
tK2

f

] ∫ t

0

E ‖u− v‖2s ds.
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It follows that

sup
t∈[τ,T ]

E ‖u− v‖2t ≤
4M2

[
1 +K2

p

]
1−Q

E ‖φ1 − φ2‖2

+
4M2

[
tK2

f

]
1−Q

∫ t

0

sup
t∈[τ,T ]

E ‖u− v‖2s ds.

where 4
[
K2

p +M2
∑∞

k=1 q
2
k

]
.

By applying Gronwall’s inequality, we have

sup
t∈[τ,T ]

E ‖u− v‖2t ≤
4M2

[
1 +K2

p

]
1−Q

E ‖φ1 − φ2‖2 × exp
4M2

[
tK2

f

]
1−Q

≤ ΛE ‖φ1 − φ2‖2 ,

where Λ =
4M2[1+K2

p]
1−Q E ‖φ1 − φ2‖2 exp

4M2[tK2
f ]

1−Q .
Now, given ϵ > 0, choose δ = ϵ

Λ such that

E ‖φ1 − φ2‖2 < δ.

Then

sup
t∈[τ,T ]

E ‖u− v‖2 < ϵ.

Hence the proof. □

5. Exponential stability

Definition 5.1. System (1)-(3) is said to be exponentially stable in the qua-
dratic mean if there exist positive constant M1 and λ > 0 such that

E ‖u(t)‖2 ≤ M1E ‖φ‖2 e−λ(t−t0), t ≥ t0.

We assume that f(t, 0) = 0 for all t ≥ 0. So that system (1)-(3) admits a trivial
solution. We further need the following assumptions

(H9) ‖R(t)‖ ≤ Me−λ(t−t0), t ≥ t0, where M ≥ 1, λ > 0.
(H10) There exist non-negative real numbers G1, G2 ≥ 0 and continuous func-

tions ν1, ν2, ν3 : [0,+∞) → R+ such that, for all t ≥ 0 and u, v ∈ X,

‖p(t, ut)‖2 ≤ G1 ‖u‖2t + ν1(t),

‖f(t, ut)‖2 ≤ G2 ‖u‖2t + ν2(t),

(H11) There exist non-negative real numbers si ≥ 0, i = 1, 2, 3 such that

νi(t) ≤ sie
−λt, for all t ≥ 0, i = 1, 2, 3.
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(H12) The function σ : [0,+∞) → L0
Q(Y, X) satisfies the following condition in

addition to assumptions (ii) and (iii):∫ t

0

eλs ‖σ(s)‖2L0
Q
ds < ∞, ∀t ∈ [0, T ],

Lemma 5.2. ([27]) Let N : [−τ,+∞) −→ [0,+∞) be a function and suppose
that there exist some constants γ > 0, λi > 0 (i = 1, 2, 3) such that

N(t) ≤ λ1e
−γt + λ2 sup

θ∈[−τ,0]

N(t+ θ) + λ3

∫ t

0

e−γ(t−s) sup
θ∈[−τ,0]

N(s+ θ)ds, t ≥ 0

and
N(t) ≤ λ1e

−γt, t ∈ [−τ, 0].

If λ2 +
λ3

γ < 1. Then , we have N(t) ≤ Me−µt, (t ≥ −τ), where µ is a positive
root of the algebra equation λ2 +

λ3

γ eµτ = 1 and M = max
{

λt(γ−µ)
λ3eµτ , λ1

}
.

Theorem 5.3. Assume that (H7)-(H8) are fulfilled and that
4
{
M2G1/λ

2 +M2
∑∞

=1 q
2
k

}
(1− k)2

< 1. (10)

where k =
√
G1. Then the mild solution of system (1)-(3) is exponentially stable

in mean square moment.

Proof. From inequality (8), we have a smal number ϵ > 0 such that η = λ − ϵ
satisfies the following inequality

4M2G1

λ(λ− ϵ)(1− k)
+

4M2
∑∞

k=1 q
2
k

1− k
< 1. (11)

From (8), we have

E ‖u(t)‖2 ≤ 1

k
E ‖p(t, ut)‖2 +

4

1− k
E

{
‖R(t [φ(0) + p(0, φ)])‖2

+

∥∥∥∥∫ t

0

R(t− s)f(s, us)ds

∥∥∥∥2
+

∥∥∥∥∫ t

0

R(t− s)σ(s)dBHQ(s)

∥∥∥∥2 + ∥∥∥ ∑
0<tk<t

R(t− tk)Ik(utk)
∥∥∥2}

=

4∑
i=1

∆i.

By (H7)-(H9), we have

∆1 =
1

k
E ‖p(t, ut)‖2
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≤ 1

k

{
G1E ‖ut‖2 + ν1(t)

}
≤ kE ‖ut‖2 +Q1e

−ηt,

where Q1 = s1
k .

∆2 =
8

1− k

[
E ‖R(t)φ(0)‖2 +E ‖R(t)p(0, φ)‖2

]
≤ 8M2

1− k
e−2λtE ‖φ(0)‖2 + 8M2

1− k
e−2λt

{
G1E ‖φ‖2 + ν1(t)

}
≤ Q2e

−ηt.

where Q2 = 8M2

1−k

[
E ‖φ(0)‖2 +G1 ‖φ‖2 + s1

]
.

Combining (H7)-(H9) and Holder’s inequality, we obtain that

∆3 =
4

1− k
E

∥∥∥∥∫ t

0

R(t− s)f(s, us)ds

∥∥∥∥2
≤ 4

1− k

∫ t

0

M2e−λ(t−s)ds

∫ t

0

e−λ(t−s)E ‖f(s, us)‖2 ds

≤ 4M2G2

λ(1− k)

∫ t

0

e−λ(t−s)E ‖us‖2 ds+Q3e
−ηt.

where Q3 = 4M2

λ(1−k)
s2

λ−η .
By applying Lemma 5.1, and (H9), (H12), we have

∆4 =
4

1− k
E

∥∥∥∥∫ t

0

R(t− s)σ(s)dBHQ(s)

∥∥∥∥2
≤ 4M2cH(2H− 1)t2H−1

1− k

∫ t

0

e−2λ(t−s)E ‖σ(s)‖2 ds

≤ e−ηt 4M
2cH(2H− 1)t2H−1e−ϵt

1− k

∫ t

0

e−λ(t−s)E ‖us‖2 ds.

Therefore, (H12) ensures the existence of a positive constant Q4 > 0, for all

t ≥ 0 such that 4M2cH(2H−1)t2H−1e−ϵt

1−k

∫ t

0

e−λ(t−s)E ‖us‖2 ds ≤ Q4, Then ∆4 ≤

Q4e
−ηt.

By (H6), we have

∆4 =
4

1− k
E
∥∥∥ ∑

0<tk<t

R(t− tk)Ik(utk)
∥∥∥2

≤ 4M2

1− k

∞∑
k=1

q2ke
−2λ(t−tk)E ‖u(tk)‖2

≤ 4M2

1− k

∞∑
k=1

q2ke
−η(t−tk)E ‖u(tk)‖2
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The above inequality together with Lemma 2.1, imply that

E ‖u(t)‖2 ≤ δe−ηt, for t ∈ [−r, 0].

and

E ‖u(t)‖2 ≤ δe−γt + k sup
−τ≤u≤0

E ‖u(t+ θ)‖2

+ k
′
∫ t

0

e−γ(t−s) sup
−τ≤u≤0

E ‖u(s+ θ)‖2 ds

+

+∞∑
k=1

e−η(t−tk)E
∥∥u(t−k )∥∥2 , t ≥ 0,

where δ = max
(∑4

k=1 Qk, sup−τ≤u≤0 E ‖φ(θ)‖2
)

and k
′
= 4M2G2

λ(1−k) , since k +

k
′

γ +
∑+∞

k=1 dk < 1, then it follows from Lemma 2.1 that there exists positive
constant θ > 0 and k > 0 such that

E ‖u(t)‖2 ≤ Qe−θt, forall t ≥ −τ

which is our crave inequality. Then the proof is completed. □

Remark 5.1. If the impulsive term ∆(u(tk)) = Ik(·) = 0, k = 1, 2, ..., then
(1)-(3) takes the following form:

d [u(t) + p(t, ut)]

= A [u(t) + p(t, ut)] dt+

[ ∫ t

0

B(t− s) [u(s) + p(s, us)] ds

+ f(t, ut)

]
dt+ σ(t)dBHQ(t), t ∈ [0, T ], t 6= tk, (12)

u(t) = φ(t), −τ ≤ t ≤ 0, (13)

where C = C([−τ, 0]; X) denotes the family of almost surely bounded and continu-
ous functions φ from [−τ, 0] into X and, as usual, with ‖φ‖C = supθ∈[−τ,0] ‖φ(θ)‖.
Also, if we assume that all the functions are defined the same as earlier, then by
the same procedure as in Theorem 5.1, we may deduce the next corollary.

Corollary 5.4. Suppose that (H3)-(H9) are satisfied, then the mild solution
of (1)-(3) is exponentially stable in the mean square moment if the following
inequality holds:

3M2
{
G2/λ

2
}

(1− k)2
< 1.



22 Dimplekumar Chalishajar, K. Ramkumar, A. Anguraj

6. Illustration

Consider the following neutral impulsive stochastic partial integrodifferential
equations with Poisson jumps :

∂
∂t [x(t, ξ)− p(t, x(t− r, ξ))] = ∂2

∂ξ2 [x(t, ξ)− p(t, x(t− r, ξ))]

+

∫ t

0

b(t− s)
∂2

∂ξ2
[x(t, ξ)− p(t, x(t− r, ξ))]ds

+f(t, x(t− r2, ξ)) + σ(s)dBHQ(s), 0 ≤ x ≤ π, t ∈ I, t 6= tk,
∆x(tk, x) = Ik(x(tk − h, x)), t = tk, k = 1, 2, · · · ,
x(t, 0) + p(t, x(t− r, 0)) = 0, t ≥ 0,
x(t, π) + p(t, x(t− r, π)) = 0, t ≥ 0,
x(θ, ξ) = x0(θ, ξ), θ ∈]−∞, 0] and 0 ≤ ξ ≤ π,

(14)

where I = [0, T ] and BH denotes a fractional Brownian motion, p, f : I ×R → R,
and b : I → R are continuous fuctions. Let Y = L2([0, π]), and let

en :=

√
2

π
sinnx, n = 1, 2, · · ·

Then (en)n∈N is a complete orthonormal basis in Y. Let X = L2([0, π]), and let
A = ∂2

∂z2 , with domain
D(A) = H2([0, π]) ∩H1

0 ([0, π]).

Then, it is well known that

Az = −
∞∑

n=1

n2〈〈z, en〉en, ∀z ∈ X,

and A is the infinitesimal generator of a strongly continuous semigroup of bounded
linear operators {(T (t))t≥0} on X, which is given by

T (t)ξ =

∞∑
n=1

e−n2t〈ξ, en〉en, ξ ∈ D(A).

Let B : D(A) ⊂ X → X be the operator defined by B(t)(y) = b(t)Ay for t ≥ 0
and y ∈ D(A).
In order to define the operator Q : Y → T, we choose a sequence {en}n≥1 ⊂ R+,
set Qen = σnen, and assume that

tr(Q) =

∞∑
n=1

√
σn < ∞.

Define the process BH by

BH =

∞∑
n=1

√
λnγn(t)en. where H ∈ (

1

2
, 1), and

{
γHn
}
n∈N .

We suppose that
(1) For t ≥ 0, p(t, 0) = f(t, 0) = k0.
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(2) there exists a positive constant l1, such that
‖p(t, ξ1)− p(t, ξ2)‖≤ l1‖ξ1 − ξ2‖, t ≥ 0, ξ1, ξ2 ∈ R;

(3) there exists a positive constant k1, such that
‖f(t, ξ1)− f(t, ξ2)‖2≤ k1(‖ξ1 − ξ2‖2), t ≥ 0, ξ1, ξ2 ∈ R;

(4) there exists a positive constant qk, k = 1, 2, ..., such that
‖Ik(ξ1)− Ik(ξ2)‖2≤ qk(‖ξ1 − ξ2‖2), k = 1, 2, ..., ξ1, ξ2 ∈ R;

(5) The function σ : [0,+∞) → L0
2(L2[0, π],L2[0, π]) satisfies∫ T

0

‖σ(s)‖2L0
2
< ∞, ∀T > 0.

For t ≥ 0 and ξ ∈ X, define the operators F, P : [0, T ]× X → X for ξ ∈ [0, π] by
P (t, ξ)(ξ) = p(t, ξ(−r1)(ξ1)),

F (t, ξ)(ξ) = f(t, ξ(−r1)(ξ2)),

If we put {
u(t)(ξ) = x(t, ξ), t ≥ 0,

φ(θ)(ξ) = x0(θ, ξ), θ ∈ [−r, 0]
ξ ∈ [0, π],

then (14) takes the following abstract form:
d [u(t) + p(t, ut)]

= A [u(t) + p(t, ut)] dt+

[ ∫ t

0

B(t− s) [u(s) + p(s, us)] ds

+ f(t, ut)

]
dt+ σ(t)dBHQ(t), t ∈ [0, T ], t 6= tk, (15)

∆u(tk) = u(t+k )− u(t−k ) = Ik(u(tk)), t = tj , k = 1, 2, ..., (16)
u(t) = φ(t), −τ ≤ t ≤ 0, (17)

Moreover, if b is a bounded and C1 function such that b′ is bounded and uni-
formly continuous, then (H1) and (H2) are satisfied, and hence, by Theorem
2.1, (14) has a resolvent operator (R(t))t≥0 on X. As a consequence of the con-
tinuity of f and assumption (1), it follows that F and P are continuous on
[0, T ]× X with values in X. By assumption (3), one can see that

‖F (t, ξ1)− F (t, ξ2)‖2≤ k(‖ξ1 − ξ2‖2), t ≥ 0, ξ1, ξ2 ∈ R;
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Similarly, the same property for P (t, u) can also be verified.
The remaining conditions can be verified similarly. Therefore, the existence of a
unique mild solution of (14) follows.

7. Conclusion

In this article we have studied the existence and exponential stability of neu-
tral stochastic partial integrodifferential equations driven by fractional Brownian
motion with impulsive effects with Hurst parameter H ∈ ( 12 , 1) using theory of
resolvent operators. Further, we established a new impulsive-integral inequality
to prove the exponential stability of mild solutions in the mean square moment.
One can extend the same system to second order non-autonomous with infi-
nite delay. Also one can study the existence and exponential stability of neutral
stochastic fractional order partial integrodifferential equations driven by Rossen-
blatt process with impulsive effects.
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